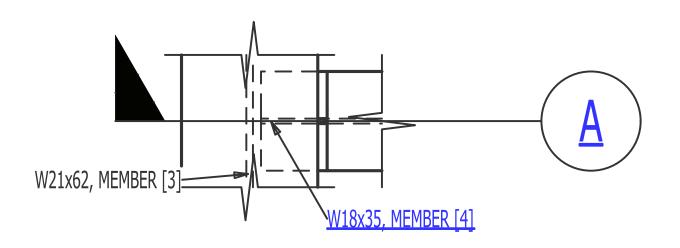
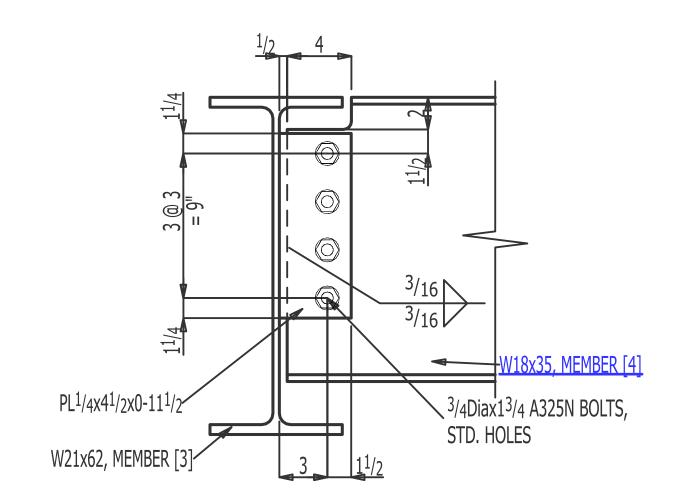


SDS2 Steel Connection Design: Connection Cube Report


Cube: Ex. II.A-18 Revision: 0 Project: ASD16ValidationExamples Engineer: Fabricator: ASD16ValidationExamples

Generated by SDS2 x 2025.03 on Friday, Oct 11, 2024

Ex. II.A-18 [2] at X=25-0, Y=25-0 Elev=-8 7/8



TOP SIDE VIEW

Beam B_4 [4]

Design method

- AISC Steel Construction Manual, Sixteenth Edition (ASD)
- AISC 360-22

Overview

Section size:	W18x35
Sequence:	1
ABM:	N/Assign
Plan length:	25-0
Camber:	0.00 in
Span length:	25-0
Slope:	0.00 °
Material length:	24-11 5/16
Plan rotation:	0.00 °

Section properties

Material grade:	A992
Yield stress, <i>F_y</i> :	50 ksi
Tensile strength, <i>F_u</i> :	65 ksi
Depth, <i>d</i> :	17.7 in
Web thickness, <i>t_w</i> :	0.3 in
Flange width, <i>b_j</i> :	6 in
Flange thickness, <i>t_f</i> :	0.425 in
Design k distance, <i>k_{des}</i> :	0.827 in
Detail k distance, <i>k_{det}</i> :	1.125 in
Distance between web toes of fillets, <i>T</i> :	15.45 in
Moment of inertia about the major axis, I_x :	510 in ⁴

Design summary

Left end

Connection:	Shear tab	
	Plate, Size as required	
	No Stiffener Opposite	
	Shear plate on NS, Skew holes in beam	
	Combine shear plates: Automatic	
	One bolt column	
	Bevel shear tab: Automatic	
	Attach to: Supporting	
Elevation:	0	
Minus Dim:	0.6875 in	
Mtrl Setback:	0.6875 in (AUTO)	
Std Detail:	None	
Web:	Web vertical	
End rotation:	0.00 °	
Shear:	26.5 kips	
Moment:	0.0 kip∙ft (AUTO)	
Tension:	0.0 kips	
Compress:	0.0 kips	
Tying:	0.0 kips (AUTO)	

B_4 [4] Connection strength check: LEFT END

Member end summary

Connecting nodes

<u>Node 1</u>

Beam:	B_3 [3]
Section size:	W21x62
End 0 elevation:	0
End 1 elevation:	0
Support intersection elevation:	0
Supporting beam rotation:	0.00 degrees
	(looking toward left end)
Material grade:	A992
Detail k distance, k _{dei} :	1.3125 in
Design k distance, <i>k_{des}</i> :	1.12 in
Supporting member thickness, <i>t_{sup}</i> :	0.4 in

Design loads

Shear: 26.5 kips

Design load notes

- Non-composite design
- Reaction has been input
- Design reaction is 49.9 % of the allowable uniform steel beam load.

Connection summary

• SINGLE PLATE SHEAR CONNECTION

Connection details

Plate:	Grade:	A572-50
	Tensile strength, <i>Fu</i> :	65 ksi
	Yield stress, F_y :	50 ksi
	Thickness, <i>t</i> .	0.25 in
	Width, <i>b</i> :	4.475 in
	Depth, <i>d</i> :	11.5 in
	Weld line to bolt group c.g., <i>a</i> :	2.9875 in
Weld:	Weld type:	Double fillet
	Weld leg size, <i>w</i> :	0.1875 in
	Total effective weld throat, <i>t</i> _e :	0.27 in
	Weld metal strength, $F_{e\!x\!x}$:	70 ksi
Bolts:	Bolt type:	A325N
	Hole type in connection:	Standard round
	Bolt diameter, <i>d</i> _b :	3/4
	Bolt rows, <i>n</i> :	4
	Bolt row spacing, <i>s</i> :	3 in
	Bolt columns, <i>m</i> :	1
	Web end distance, $L_{e,w}$:	2.5 in
Connection geometry:	Dihedral angle, $ heta$:	90.00 °

Connection design lock summary

Locked Via Member Edit:	16
(at dd) Not Locked:	263

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.A-18

Cope information

Top cope depth, <i>d_{ct}</i> :	2 in
Top cope length, <i>C</i> :	4 in

Cope notes

- Cope length dimension is from the end of the beam web.
- At coped section : S_{net} = 18.20 in³, h_o = 15.70 in AISC Table 9-2
- *L_h* = 2.50 in, *L_v* = 1.50 in

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.A-18

Expanded design calculation

Shear rupture of plate (21). Reference J4.2

Connection tensile strength, $F_u = 65 \ ksi$ Bolt rows, n = 4Connection thickness, $t_{conn} = 0.25$ in Connection depth, $d_{pl} = 11.5$ in Hole diameter, $d_h = 0.875$ in Net shear area, $A_{nv} = t_{conn} \cdot (d_{pl} - n \cdot d_h)$ $= 0.25 \cdot (11.5 - 4 \cdot 0.875)$ $= 2 in^{2}$ $\Omega = 2$ Shear capacity, $\frac{V_n}{\Omega} = \frac{0.6 \cdot F_u \cdot A_{nv}}{\Omega}$ = $\frac{0.6 \cdot 65 \cdot 2}{2}$ = 39 kips Shear capacity = $\frac{V_n}{\Omega}$ = 39 kipsApplied member shear, $V_a = 26.5 kips$ $Unity = \frac{V_a}{Shear \ capacity}$ $= \frac{26.5}{39} \\= 0.679487$ $39.0 \ kips \ge 26.5 \ kips$ (OK) 0.679 ≤ 1 (**OK**)

Bolt shear of web bolts (3). Reference J3.7, J3.9

Number of shear planes, $N_s = 1$ Coefficient, C = 3.56171Bolt area, $A_b = 0.441786 in^2$ Allowable shear stress, $F_{nv} = 54 ksi$ $\Omega = 2$ Bolt shear capacity, $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$ $= \frac{54 \cdot 0.441786 \cdot 1}{2}$ = 11.9282 kipsShear capacity = $C \cdot \frac{R_{n,v}}{\Omega}$ $= 3.56171 \cdot 11.9282$ = 42.485 kipsApplied member shear, $V_a = 26.5 kips$ $Unity = \frac{V_a}{Shear\ capacity}$ $= \frac{26.5}{42.5}$ = 0.623529 $42.5\ kips \ge 26.5\ kips \quad (OK)$ $0.624 \le 1 \quad (OK)$

Block shear rupture of plate (6). Reference J4.3

Plate thickness, $t_{pl} = 0.25$ in Yield stress, $F_v = 50 \ ksi$ Tensile strength, $F_u = 65 \ ksi$ Bolt column spacing, $s_{col} = 0$ in Bolt row spacing, s = 3 in Bolt rows, n = 4Column edge distance, $L_{eh} = 1.4875$ in Row edge distance, $L_{ev} = 1.25$ in Bolt columns, m = 1Hole diameter, $d_h = 0.875$ in Hole length, $l_h = 0.875$ in Total length of bolt group, $s_{total} = 9$ in Gross shear area, $A_{gv} = t_{pl} \cdot (s_{total} + L_{ev})$ $= 0.25 \cdot (9 + 1.25)$ $= 2.5625 in^2$ Net shear area, $A_{nv} = t_{pl} \cdot (s_{total} + L_{ev}) - t_{pl} \cdot (n - 0.5) \cdot d_h$ $= 0.25 \cdot (9 + 1.25) - 0.25 \cdot (4 - 0.5) \cdot 0.875$ $= 1.79688 in^2$ Gross tensile area, $A_{gt} = t_{pl} \cdot (s_{col} \cdot (m - 1) + L_{eh})$ $= 0.25 \cdot (0 \cdot (1 - 1) + 1.4875)$ $= 0.371875 in^2$ Net tensile area, $A_{nt} = t_{pl} \cdot (s_{col} \cdot (m-1) + L_{eh}) - t_{pl} \cdot (m-0.5) \cdot l_h$ $= 0.25 \cdot (0 \cdot (1 - 1) + 1.4875) - 0.25 \cdot (1 - 0.5) \cdot 0.875$ $= 0.2625 in^2$ Reduction coefficient, $U_{bs} = 1$ Shear yield load, $R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$ $= 0.6 \cdot 50 \cdot 2.5625$ $= 76.875 \ kips$ Shear rupture load, $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$ $= 0.6 \cdot 65 \cdot 1.79688$ $= 70.0781 \ kips$

Page 12

Block shear rupture of plate (6). Reference J4.3 (continued)

Tension load, $R_t = U_{bs} \cdot F_u \cdot A_{nt}$ $= 1 \cdot 65 \cdot 0.2625$ $= 17.0625 \ kips$ Nominal block shear capacity, $R_n = min (R_{gv}, R_{nv}) + R_t$ = min (76.875, 70.0781) + 17.0625 $= 87.1406 \ kips$ $\Omega = 2$ Shear capacity = $\frac{R_n}{\Omega}$ $=\frac{87.1406}{2}$ $= 43.5703 \ kips$ Applied member shear, $V_a = 26.5 kips$ $Unity = \frac{V_a}{Shear \ capacity}$ <u>= 26.5</u> 43.6 = 0.607798 $43.6 \ kips \ge 26.5 \ kips$ (OK) $0.608 \le 1$ (OK)

Bolt bearing on plate (110). Reference J3.11

Tensile strength, $F_u = 65 \ ksi$ Plate thickness, $t_{nl} = 0.25$ in Bolt row spacing, s = 3 in Row edge distance, $L_{ev} = 1.25$ in Bolt diameter, $d_b = 0.75$ in Number of shear planes, $N_s = 1$ Bolt columns, m = 1Bolt rows, n = 4Total length of bolt group, $s_{total} = 9$ in Length of joint, $L = s_{total}$ = 9 in Bolt area, $A_b = 0.441786 in^2$ Allowable shear stress, $F_{nv} = 54 \ ksi$ $\Omega = 2$ Bolt shear capacity, $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$ $= \frac{54 \cdot 0.441786 \cdot 1}{2} \\= 11.9282 \, kips$ Hole diameter, $d_h = 0.8125$ in

Bolt bearing on plate (110). Reference J3.11 (continued)

 $\Omega = 2$ Bolt bearing capacity, $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t_{pl} \cdot F_u}{\Omega}$ $= \frac{2.4 \cdot 0.75 \cdot 0.25 \cdot 65}{2}$ = 14.625 kips Interior bolt capacity Bolt row spacing, s = 3 in Clear distance from bolt hole to bolt hole, $L_{c,int} = s - d_h$ = 3 - 0.8125= 2.1875 in $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t_{pl} \cdot F_u}{\Omega}$ $= \frac{1.2 \cdot 2.1875 \cdot 0.25 \cdot 65}{2}$ = 21.3281 kips Controlling bearing/tearout strength of interior bolt, $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (21.3281, 14.625, 11.9282)= 11.9282 kipsEdge bolt capacity Clear distance from hole to edge of material, $L_{c.edge} = L_{ev} - 0.5 \cdot d_h$ $= 1.25 - 0.5 \cdot 0.8125$ = 0.84375 in $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,edge} \cdot t_{pl} \cdot F_u}{\Omega}$ $= \frac{1.2 \cdot 0.84375 \cdot 0.25 \cdot 65}{2}$ = 8.22656 kips Controlling bearing/tearout strength of exterior bolt, $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (8.22656, 14.625, 11.9282) $= 8.22656 \ kips$ Number of edge bolts, $N_e = m$ = 1 Number of interior bolts, $N_i = m \cdot n - N_e$ $= 1 \cdot 4 - 1$ = 3

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.A-18

Bolt bearing on plate (110). Reference J3.11 (continued)

Shear capacity = $\frac{R_{n,e}}{\Omega} \cdot N_e + \frac{R_{n,i}}{\Omega} \cdot N_i$ = 8.22656 \cdot 1 + 11.9282 \cdot 3 = 44.0113 kips Applied member shear, $V_a = 26.5$ kips Unity = $\frac{V_a}{Shear \ capacity}$ = $\frac{26.5}{44}$ = 0.602273 44.0 kips \geq 26.5 kips (OK) 0.602 \leq 1 (OK)

Bolt bearing on beam web (110). Reference J3.11

Tensile strength, $F_u = 65 \ ksi$ Plate thickness, $t_{pl} = 0.3$ in Bolt row spacing, s = 3 in Row edge distance, $L_{ev} = 1.5$ in Bolt diameter, $d_b = 0.75$ in Number of shear planes, $N_s = 1$ Bolt columns, m = 1Bolt rows, n = 4Total length of bolt group, $s_{total} = 9$ in Length of joint, $L = s_{total}$ = 9 inBolt area, $A_b = 0.441786 in^2$ Allowable shear stress, $F_{nv} = 54 \ ksi$ $\Omega = 2$ Bolt shear capacity, $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$ $= \frac{54 \cdot 0.441786 \cdot 1}{2}$ = 11.9282 kips Hole diameter, $d_h = 0.8125$ in $\Omega = 2$ Bolt bearing capacity, $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t_{pl} \cdot F_u}{\Omega}$ $= \frac{2.4 \cdot 0.75 \cdot 0.3 \cdot 65}{2} = 17.55 \ kips$

Report: Connection Cube Report for Ex. II.A-18

Interior bolt capacity Bolt row spacing, s = 3 in Clear distance from bolt hole to bolt hole, $L_{c,int} = s - d_h$ = 3 - 0.8125= 2.1875 in $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t_{pl} \cdot F_u}{\Omega}$ $=\frac{1.2 \cdot 2.1875 \cdot 0.3 \cdot 65}{2}$ $= 25.5938 \, kips$ Controlling bearing/tearout strength of interior bolt, $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (25.5938, 17.55, 11.9282) = 11.9282 kipsEdge bolt capacity Clear distance from hole to edge of material, $L_{c,edge} = L_{ev} - 0.5 \cdot d_h$ $= 1.5 - 0.5 \cdot 0.8125$ = 1.09375 in $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,edge} \cdot t_{pl} \cdot F_u}{\Omega}$ $= \frac{1.2 \cdot 1.09375 \cdot 0.3 \cdot 65}{2}$ = 12.7969 kips Controlling bearing/tearout strength of exterior bolt, $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (12.7969, 17.55, 11.9282)= 11.9282 kipsNumber of edge bolts, $N_e = m$ = 1 Number of interior bolts, $N_i = m \cdot n - N_e$ $= 1 \cdot 4 - 1$ = 3 Shear capacity = $\frac{R_{n,e}}{\Omega} \cdot N_e + \frac{R_{n,i}}{\Omega} \cdot N_i$ $= 11.9282 \cdot 1 + 11.9282 \cdot 3$ $= 47.7129 \ kips$ Applied member shear, $V_a = 26.5 kips$ $Unity = \frac{V_a}{Shear\ capacity}$

Bolt bearing on beam web (110). Reference J3.11 (continued)

 $= \frac{26.5}{47.7}$ = 0.555556 47.7 kips ≥ 26.5 kips (OK) 0.556 ≤ 1 (OK)

Shear yielding of plate (38). Reference J4.2

Depth, d = 11.5 in Plate thickness, $t_{nl} = 0.25$ in Plate yield stress, $F_{v,pl} = 50 \ ksi$ Applied member shear, $V_a = 26.5 kips$ Applied tension load, horizontal component, $T_{a,h} = 0$ kips Applied compression load, horizontal component, $C_{a,h} = 0$ kips Gross area, $A_g = d \cdot t_{nl}$ $= 11.5 \cdot 0.25$ $= 2.875 in^2$ $\Omega = 1.5$ Plate capacity in pure shear, $\frac{R_v}{\Omega} = \frac{0.6 \cdot F_{y,pl} \cdot A_g}{\Omega}$ $= \frac{0.6 \cdot 50 \cdot 2.875}{1.5} = 57.5 \ kips$ $Unity = \frac{V_a}{\frac{R_v}{\Omega}}$ $= \frac{26.5}{57.5} \\= 0.46087$ Shear capacity = $\frac{R_v}{\Omega}$ = 57.5 kips $57.5 \text{ kips} \ge 26.5 \text{ kips}$ **(OK)** $0.461 \le 1$ (OK)

Block shear of beam web (6). Reference J4.3

Plate thickness, *Web thickness* = 0.3 *in* Yield stress, $F_y = 50 \ ksi$ Tensile strength, $F_u = 65 \ ksi$ Bolt column spacing, $s_{col} = 0 \ in$ Bolt row spacing, $s = 3 \ in$ Bolt rows, n = 4Column edge distance, $L_{eh} = 2.5 \ in$

Block shear of beam web (6). Reference J4.3 (continued)

Row edge distance, $L_{ev} = 1.5$ in Bolt columns, m = 1Hole diameter, $d_h = 0.875$ in Hole length, $l_h = 0.875$ in Total length of bolt group, $s_{total} = 9$ in Gross shear area, $A_{gv} = Web \ thickness \cdot (s_{total} + L_{ev})$ $= 0.3 \cdot (9 + 1.5)$ $= 3.15 in^{2}$ Net shear area, $A_{nv} = Web \ thickness \cdot (s_{total} + L_{ev}) - Web \ thickness \cdot (n - 0.5) \cdot d_h$ $= 0.3 \cdot (9 + 1.5) - 0.3 \cdot (4 - 0.5) \cdot 0.875$ $= 2.23125 in^2$ Gross tensile area, $A_{gt} = Web \ thickness \cdot (s_{col} \cdot (m - 1) + L_{eh})$ $= 0.3 \cdot (0 \cdot (1 - 1) + 2.5)$ $= 0.75 in^2$ Net tensile area, $A_{nt} = Web$ thickness $\cdot (s_{col} \cdot (m - 1) + L_{eb}) - Web$ thickness $\cdot (m - 0.5) \cdot l_{b}$ $= 0.3 \cdot (0 \cdot (1 - 1) + 2.5) - 0.3 \cdot (1 - 0.5) \cdot 0.875$ $= 0.61875 in^2$ Reduction coefficient, $U_{hs} = 1$ Shear yield load, $R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$ $= 0.6 \cdot 50 \cdot 3.15$ = 94.5 kipsShear rupture load, $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$ $= 0.6 \cdot 65 \cdot 2.23125$ $= 87.0187 \ kips$ Tension load, $R_t = U_{bs} \cdot F_u \cdot A_{nt}$ $= 1 \cdot 65 \cdot 0.61875$ $= 40.2188 \ kips$ Nominal block shear capacity, $R_n = min (R_{gv}, R_{nv}) + R_t$ = min (94.5, 87.0187) + 40.2188 $= 127.237 \ kips$ $\Omega = 2$ Shear capacity = $\frac{R_n}{\Omega}$ $=\frac{127.237}{2}$ = 63.6187 kips Applied member shear, $V_a = 26.5 kips$ $Unity = \frac{d_{u}}{Shear \ capacity}$ <u>= 26.5</u> 63.6

Block shear of beam web (6). Reference J4.3 (continued)

= 0.41666763.6 kips ≥ 26.5 kips (OK) $0.417 \le 1$ (OK)

Shear rupture of beam web (4). Reference J4.2

Tensile strength, $F_u = 65 \ ksi$ Bottom cope depth, $d_{cb} = 0$ in Top cope depth, $d_{ct} = 2$ in Bolt rows, n = 4Web thickness, $t_w = 0.3$ in Full section depth, d = 17.7 in Gross shear area, $A_g = t_w \cdot (d - d_{ct} - d_{cb})$ $= 0.3 \cdot (17.7 - 2 - 0)$ $= 4.71 in^2$ Hole diameter, $d_h = 0.875$ in Net shear area, $A_n = A_g - n \cdot d_h \cdot t_w$ $= 4.71 - 4 \cdot 0.875 \cdot 0.3$ $= 3.66 in^2$ $\Omega = 2$ Shear capacity = $\frac{0.6 \cdot F_u \cdot A_n}{\Omega}$ = $\frac{0.6 \cdot 65 \cdot 3.66}{2}$ = 71.37 kips Applied member shear, $V_a = 26.5 \text{ kips}$ $Unity = \frac{V_a}{Shear\ capacity}$ $=\frac{26.5}{71.4}$ = 0.37114871.4 kips \geq 26.5 kips (OK) $0.371 \le 1$ (OK)

Shear yielding of beam web (5). Reference G2.1

Yield stress, $F_y = 50 \ ksi$ Bottom cope depth, $d_{cb} = 0 \ in$ Top cope depth, $d_{ct} = 2 \ in$ Web thickness, $t_w = 0.3 \ in$ Full section depth, $d = 17.7 \ in$ Gross area, $A_g = t_w \cdot (d - d_{ct} - d_{cb})$ $= 0.3 \cdot (17.7 - 2 - 0)$ $= 4.71 \ in^2$

 $\Omega = 1.5$ Shear capacity = $\frac{0.6 \cdot F_y \cdot A_g}{\Omega}$ = $\frac{0.6 \cdot 50 \cdot 4.71}{1.5}$ = 94.2 kips
Applied member shear, $V_a = 26.5$ kips
Unity = $\frac{V_a}{Shear \ capacity}$ = $\frac{26.5}{94.2}$ = 0.281316
94.2 kips ≥ 26.5 kips (OK)

 $0.281 \le 1$ (OK)

Flexure of plate (314). Reference Pg 10-51, 12-7

Shear tab yield stress, $F_y = 50 \text{ ksi}$ Eccentricity, e = 1.49375 inShear tab thickness, t = 0.25 inShear tab depth, d = 11.5 in

Plastic section modulus about the major axis, $Z_x = \frac{t \cdot d^2}{4}$

 $= \frac{0.25 \cdot 11.5^2}{4}$ $= 8.26562 \text{ in}^3$ $\Omega = 1.67$ Shear capacity $= \frac{\left(\frac{F_y \cdot Z_x}{\Omega}\right)}{e}$

$$=\frac{\left(\frac{50\cdot 8.26562}{1.67}\right)}{1.49375}$$

= 165.673 kips Applied member shear, $V_a = 26.5$ kips

 $Unity = \frac{V_a}{Shear \ capacity} = \frac{26.5}{165.7} = 0.159928$ 165.7 kips $\ge 26.5 \ kips$ (OK) 0.160 ≤ 1 (OK)

Page 19

Flexure of coped beam (41). Reference Pg 9-7

Material setback, $m_s = 0.4875$ in Yield stress, $F_v = 50 \ ksi$ Bottom cope length, $C_b = 0$ in Bottom cope depth, $d_{cb} = 0$ in Top cope length, $C_t = 4$ in Top cope depth, $d_{ct} = 2$ in k distance, k = 0.827 in Web thickness, $t_w = 0.3$ in Beam depth, d = 17.7 in Steel modulus of elasticity, $E = 29000 \ ksi$ Effective top cope depth, $d_{ct,e} = max (d_{ct,0})$ = max (2,0)= 2 inEffective top cope length, $c_{t,e} = C_t$ = 4 inEffective bottom cope depth, $d_{cb.e} = max \ (d_{cb.0})$ = max (0,0)= 0 in Effective bottom cope length, $c_{b,e} = C_b$ = 0 in Top flange is coped. Depth of coped section, $h_c = d - d_{ct,e} - d_{ch,e}$ = 17.7 - 2 - 0= 15.7 in Maximum distance from supporting face to end of cope, $e = c_{t,e} + m_s$ = 4 + 0.4875= 4.4875 in Web slenderness, $\lambda = \frac{h_c}{t_w}$ $=\frac{15.7}{0.3}$ = 52.3333Cope length, $C = c_{t,e}$ = 4 inBuckling adjustment factor, $f = \frac{2 \cdot C}{d}$ $=\frac{2\cdot 4}{17.7}$ = 0.451977Plate buckling coefficient, $k = 2.2 \cdot \left(\frac{h_c}{C}\right)^{1.65}$

Flexure of coped beam (41). Reference Pg 9-7 (continued)

 $= 2.2 \cdot \left(\frac{15.7}{4}\right)^{1.65} \\= 21.0019$

Modified plate buckling coefficient, $k_1 = max \ [f \cdot k, 1.61]$

 $= max (0.451977 \cdot 21.0019, 1.61)$ = 9.49237

Limiting slenderness for a compact web, $\lambda_p = 0.475 \cdot \sqrt{\left(\frac{k_1 \cdot E}{F_y}\right)}$

$$= 0.475 \cdot \sqrt{\left(\frac{9.49237 \cdot 29000}{50}\right)}$$

= 35.2448

Plastic section modulus at the cope, $Z_c = 32.0982 \text{ in}^3$ Plastic bending moment, $M_p = \frac{F_y \cdot Z_c}{12}$

$$= \frac{50 \cdot 32.0982}{12} \\ = 133.742 \ kip \cdot ft$$

Elastic section modulus at the cope, $S_c = 18.2016 \text{ in}^3$ Flexural yield moment, $M_y = \frac{F_y \cdot S_c}{12}$

 $= \frac{50 \cdot 18.2016}{12} \\= 75.8398 \ kip \cdot ft$

Flexural strength at the coped section, $M_n = M_p - (M_p - M_y) \cdot \left(\frac{\lambda}{\lambda_p} - 1\right)$

$$= 133.742 - (133.742 - 75.8398) \cdot \left(\frac{52.3333}{35.2448} - 1\right)$$
$$= 105.668 \ kip \cdot ft$$
$$\Omega = 1.67$$

Controlling strength, $R_r = \left(\frac{\left(\frac{M_n}{\Omega}\right)}{e}\right) \cdot 12$ $= \left(\frac{\left(\frac{105.668}{1.67}\right)}{4.4875}\right) \cdot 12$ $= 169.202 \ kips$ Shear capacity = R_r $= 169.202 \ kips$ Applied member shear, $V_a = 26.5 \ kips$ $Unity = \frac{V_a}{Shear \ capacity}$

 $= \frac{26.5}{169.2}$ = 0.156619 169.2 kips ≥ 26.5 kips (OK) 0.157 ≤ 1 (OK)

Shear of support (36). Reference J4.2

Connection depth, $d_{conn} = 11.5$ in Supporting member tensile strength, $F_{u,s} = 65 \ ksi$ Supporting member thickness, $t_{sup} = 0.4$ in Web axial load, horizontal component, $P_{a,wh} = 0$ kips Applied member shear, $V_a = 26.5 kips$ Supporting member yield stress, $F_{y,s} = 50 \ ksi$ Shear area, $A_v = 2 \cdot d_{conn} \cdot t_{sup}$ $= 2 \cdot 11.5 \cdot 0.4$ $= 9.2 in^{2}$ $\Omega = 2$ $\Omega = 1.5$ Gross shear capacity of support, $R_{\nu} = min \left(\frac{0.6 \cdot F_{y,s} \cdot A_{\nu}}{\Omega}, \frac{0.6 \cdot F_{u,s} \cdot A_{\nu}}{\Omega}\right)$ $= min\left(\frac{0.6 \cdot 50 \cdot 9.2}{1.5}, \frac{0.6 \cdot 65 \cdot 9.2}{2}\right)$ = 179.4 kipsUnity = $\frac{V_a}{R_v}$ = _26.5 179.4 = 0.147715Shear capacity = R_v = 179.4 kips $179.4 \text{ kips} \ge 26.5 \text{ kips}$ **(OK)** $0.148 \le 1$ (OK)

Rupture of weld to supporting member (112). Reference J2, Table J2.5

Shear tab thickness, $t_{conn} = 0.25$ in FS Weld leg size, $w_{fs} = 0.1875$ in NS Weld leg size, $w_{ns} = 0.1875$ in Total effective weld throat, $t_{eff} = 0.707 \cdot (w_{ns} + w_{fs})$ $= 0.707 \cdot (0.1875 + 0.1875)$ = 0.265125 in Minimum specified weld size, $w_{min} = 0.625 \cdot t_{conn}$ $= 0.625 \cdot 0.25$

Rupture of weld to supporting member (112). Reference J2, Table J2.5 (continued)

= 0.15625 in

Minimum specified total weld throat thickness, $t_{min} = 2 \cdot 0.707 \cdot w_{min}$

- $= 2 \cdot 0.707 \cdot 0.15625$
- = 0.220938 in

 $(t_{eff} = 0.265125 in) \ge (t_{min} = 0.220938 in)$

Weld is sized to develop the full strength of the plate.

Results summary

Shear Tab on left end of Beam B_4 [4]

AISC manual conventional configuration and design method

t d_b/2 + 1/16 in

 $t_w d_b/2 + 1/16$ in

Limit state summary

	Calc. Num.	Unity ratio	Rn/OMEGA	AISC Ref
Shear rupture of plate:	21	0.679	39.0 kips	J4.2
Bolt shear of web bolts:	3	0.624	42.5 kips	J3.7, J3.9
Block shear rupture of plate:	6	0.608	43.6 kips	J4.3
Bolt bearing on plate:	110	0.602	44.0 kips	J3.11
Bolt bearing on beam web:	110	0.556	47.7 kips	J3.11
Shear yielding of plate:	38	0.461	57.5 kips	J4.2
Block shear rupture of beam web:	6	0.417	63.6 kips	J4.3
Shear rupture of beam web:	4	0.371	71.4 kips	J4.2
Shear yielding of beam web:	5	0.281	94.2 kips	G2.1
Flexure of plate:	314	0.160	165.7 kips	Pg 10-51, 12-7
Flexure of coped beam:	41	0.157	169.2 kips	Pg 9-7
Shear of support:	36	0.148	179.4 kips	J4.2

Connection strength

	Value:	Unity ratio:
Shear:	39.0 kips	0.679

Notes and conclusions

- Weld sized to develop the full plate strength.
- See 'Single-plate connection' notes for design criteria applicable to this connection. \Lambda
- CONNECTION IS OK
 - Strength equals or exceeds design loads.

