

# SDS2 Steel Connection Design: Connection Cube Report

Cube: Ex. II.A-20 Revision: 0 Project: ASD16ValidationExamples Engineer: Fabricator: ASD16ValidationExamples

Generated by SDS2 x 2025.03 on Friday, Oct 11, 2024



# Ex. II.A-20 [4] at X=125-0, Y=75-0 Elev=-11 7/8

Page 2











# Beam B\_8 [7]

### **Design method**

- AISC Steel Construction Manual, Sixteenth Edition (ASD)
- AISC 360-22

### Overview

| Section size:    | W24x68    |
|------------------|-----------|
| Sequence:        | 1         |
| ABM:             | N/Assign  |
| Plan length:     | 25-0      |
| Camber:          | 0.00 in   |
| Span length:     | 25-0      |
| Slope:           | 0.00 °    |
| Material length: | 24-11 3/4 |
| Plan rotation:   | 0.00 °    |

### Section properties

| Material grade:                                                | A992                 |
|----------------------------------------------------------------|----------------------|
| Yield stress, <i>F<sub>y</sub></i> :                           | 50 ksi               |
| Tensile strength, <i>F</i> <sub>u</sub> :                      | 65 ksi               |
| Depth, <i>d</i> :                                              | 23.7 in              |
| Web thickness, <i>t<sub>w</sub></i> :                          | 0.415 in             |
| Flange width, <i>bj</i> :                                      | 8.97 in              |
| Flange thickness, <i>t<sub>f</sub></i> .                       | 0.585 in             |
| Design k distance, <i>k<sub>des</sub></i> :                    | 1.09 in              |
| Detail k distance, <i>k<sub>det</sub></i> :                    | 1.875 in             |
| Distance between web toes of fillets, <i>T</i> :               | 19.95 in             |
| Moment of inertia about the major axis, <i>I<sub>x</sub></i> : | 1830 in <sup>4</sup> |



### **Design summary**

### **Right end**

| Connection:   | Splice plate                  |
|---------------|-------------------------------|
|               | Plates on left end, Near side |
| Elevation:    | 0                             |
| Minus Dim:    | 0.25 in                       |
| Mtrl Setback: | 0.25 in (AUTO)                |
| Std Detail:   | None                          |
| Web:          | Web vertical                  |
| End rotation: | 0.00 °                        |
| Shear:        | 40.0 kips                     |
| Moment:       | 0.0 kip·ft (AUTO)             |
| Tension:      | 0.0 kips                      |
| Compress:     | 0.0 kips                      |
| Tying:        | 0.0 kips (AUTO)               |





# **B\_8** [7] Connection strength check: RIGHT END

### Member end summary

### **Connecting nodes**

<u>Node 1</u>

| Beam:                                          | B_7 [8]                      |
|------------------------------------------------|------------------------------|
| Section size:                                  | W24x55                       |
| End 0 elevation:                               | 0                            |
| End 1 elevation:                               | 0                            |
| Support intersection elevation:                | 0                            |
| Supporting beam rotation:                      | 0.00 degrees                 |
|                                                | (looking toward left<br>end) |
| Material grade:                                | A992                         |
| Detail k distance,<br><i>k<sub>det</sub></i> : | 1.4375 in                    |
| Design k distance,<br><i>k<sub>des</sub></i> : | 1.01 in                      |
| Depth, <i>d</i> :                              | 23.6 in                      |
| Web thickness, <i>t<sub>w</sub></i> :          | 0.395 in                     |
| Flange thickness, <i>t<sub>f</sub></i> :       | 0.505 in                     |

### **Design loads**

Shear: 40.0 kips

### **Design load notes**

- Non-composite design
- Reaction has been input
- Design reaction is 28.3 % of the allowable uniform steel beam load.



### **Connection summary**

- BOLTED BEAM SHEAR PLATE SPLICE
- (Splice plate on one side of web)

### **Connection details**

| Plates:                 | Grade:                                 | A572-50        |
|-------------------------|----------------------------------------|----------------|
|                         | Tensile strength, $F_u$ :              | 65 ksi         |
|                         | Yield stress, $F_y$ :                  | 50 ksi         |
| Web plates:             | Thickness, <i>t</i> :                  | 0.375 in       |
|                         | Depth, <i>d</i> :                      | 12 in          |
| Web bolts:              | Bolt type:                             | A325N          |
|                         | Hole type in connection:               | Standard round |
|                         | Bolt diameter, <i>d</i> <sub>b</sub> : | 7/8            |
|                         | Bolt rows, <i>n</i> :                  | 4              |
|                         | Bolt row spacing, <i>s</i> :           | 3 in           |
|                         | Bolt columns, <i>m</i> :               | 1              |
| Gap between members, g: | 0.5 in                                 |                |

### **Connection design lock summary**

| Locked Via Member Edit: | 20  |
|-------------------------|-----|
| (at dd) Not Locked:     | 106 |



### **Expanded design calculation**

### Bolt bearing on web plate(s) (20). Reference J3.11

Number of shear planes,  $N_s = 1$ Number of sides, N = 1Row edge distance,  $L_e = 1.5$  in Connection thickness, t = 0.375 in Connection tensile strength,  $F_u = 65 \ ksi$ Bolt row spacing, s = 3 in Bolt columns, m = 1Bolt rows, n = 4Bolt diameter,  $d_b = 0.875$  in C = 3.07968Total number of bolts,  $N = n \cdot m$  $= 4 \cdot 1$ = 4Number of edge bolts,  $N_{edge} = m$ = 1 Number of interior bolts,  $N_{int} = N - m$ = 4 - 1= 3Total length of bolt group,  $s_{total} = 9$  in Bolt area,  $A_b = 0.60132 in^2$ Allowable shear stress,  $F_{nv} = 54 \ ksi$  $\Omega = 2$ Bolt shear capacity,  $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$  $= \frac{54 \cdot 0.60132 \cdot 1}{2}$ = 16.2357 kips Hole diameter,  $d_h = 0.9375$  in  $\Omega = 2$ Bolt bearing capacity,  $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t \cdot F_u}{\Omega}$  $=\frac{2.4\cdot0.875\cdot0.375\cdot65}{25\,5020\,12}$ = 25.5938 kips**Interior bolt capacity** Bolt row spacing, s = 3 in Clear distance from bolt hole to bolt hole,  $L_{c.int} = s - d_h$ = 3 - 0.9375

Project: ASD16ValidationExamples

Fabricator:ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

Interior bolt capacity (continued) = 2.0625 in  $\Omega = 2$ Tearout load capacity,  $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t \cdot F_u}{\Omega}$  $= \frac{1.2 \cdot 2.0625 \cdot 0.375 \cdot 65}{2}$ = 30.1641 kips Controlling bearing/tearout strength of interior bolt,  $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (30.1641, 25.5938, 16.2357)= 16.2357 kipsEdge bolt capacity Clear distance from hole to edge of material,  $L_{c.edge} = L_e - 0.5 \cdot d_h$  $= 1.5 - 0.5 \cdot 0.9375$ = 1.03125 in  $\Omega = 2$ Tearout load capacity,  $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,edge} \cdot t \cdot F_u}{\Omega}$  $= \frac{1.2 \cdot 1.03125 \cdot 0.375 \cdot 65}{2}$ = 15.082 kips Controlling bearing/tearout strength of exterior bolt,  $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{K_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (15.082, 25.5938, 16.2357) $= 15.082 \ kips$ Average bolt bearing/tearout,  $\frac{R_{v,ave}}{\Omega} = \frac{\left(\frac{R_{n,e}}{\Omega} \cdot N_{edge} + \frac{R_{n,i}}{\Omega} \cdot N_{int}\right)}{N}$  $=\frac{(15.082\cdot1+16.2357\cdot3)}{4}$  $= 15.9472 \ kips$ Shear capacity,  $\frac{V_n}{\Omega} = N \cdot \frac{R_{y,ave}}{\Omega} \cdot C$  $= 1 \cdot 15.9472 \cdot 3.07968$ = 49.1124 kipsShear capacity =  $\frac{V_n}{\Omega}$ = 49.1124 kipsApplied member shear,  $V_a = 40$  kips  $Unity = \frac{V_a}{Shear \ capacity}$ 



### Bolt bearing on web plate(s) (20). Reference J3.11 (continued)

 $=\frac{40}{49.1}$ = 0.81466449.1 kips  $\geq$  40 kips (OK)  $0.815 \le 1$  (OK)

### Bolt bearing on beam web (20). Reference J3.11

Bolt diameter,  $d_b = 0.875$  in Number of shear planes,  $N_s = 1$ Number of sides, N = 1Bolt rows, n = 4Bolt columns, m = 1Vertical bolt spacing, s = 3 in This beam tensile strength,  $F_u = 65 \ ksi$ This beam web thickness,  $t_w = 0.415$  in Other beam tensile strength,  $F_{u,s} = 65 \ ksi$ Other beam web thickness,  $t_{W,s} = 0.395$  in

#### This beam

C = 3.07968Total number of bolts,  $N = n \cdot m$  $= 4 \cdot 1$ = 4 Number of edge bolts,  $N_{edge} = m$ = 1 Number of interior bolts,  $N_{int} = N - m$ = 4 - 1= 3Total length of bolt group,  $s_{total} = 9$  in Bolt area,  $A_b = 0.60132 in^2$ Allowable shear stress,  $F_{nv} = 54 \ ksi$  $\Omega = 2$ Bolt shear capacity,  $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$ = <u>54 · 0.60132 · 1</u>  $=\frac{2}{16.2357 \text{ kips}}$ Hole diameter,  $d_h = 0.9375$  in  $\Omega = 2$ Bolt bearing capacity,  $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t_w \cdot F_u}{\Omega}$ 

SDS2

Project: ASD16ValidationExamples

Fabricator: ASD16ValidationExamples

Report: Connection Cube Report for Ex. II.A-20

This beam (continued)  $= \frac{2.4 \cdot 0.875 \cdot 0.415 \cdot 65}{2}$ = 28.3238 kips **Interior bolt capacity** Vertical bolt spacing, s = 3 in Clear distance from bolt hole to bolt hole,  $L_{c,int} = s - d_h$ = 3 - 0.9375= 2.0625 in  $\Omega = 2$ Tearout load capacity,  $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t_w \cdot F_u}{\Omega}$  $= \frac{1.2 \cdot 2.0625 \cdot 0.415 \cdot 65}{2}$ = 33.3816 kips Controlling bearing/tearout strength of interior bolt,  $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (33.3816, 28.3238, 16.2357)= 16.2357 kips**Edge bolt capacity** Tear out will not occur, so the bearing capacity controls. Controlling bearing/tearout strength of exterior bolt,  $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (28.3238, 16.2357) $= 16.2357 \ kips$ Average bolt bearing/tearout,  $\frac{R_{v,ave}}{\Omega} = \frac{\left(\frac{R_{n,e}}{\Omega} \cdot N_{edge} + \frac{R_{n,i}}{\Omega} \cdot N_{int}\right)}{N}$  $=\frac{(16.2357\cdot 1+16.2357\cdot 3)}{4}$ = 16.2357 *kips* Shear capacity,  $\frac{V_n}{\Omega} = N \cdot \frac{R_{v,ave}}{\Omega} \cdot C$  $= 1 \cdot 16.2357 \cdot 3.07968$ = 50.0006 kipsShear capacity =  $\frac{V_n}{\Omega}$ = 50.0006 kipsApplied member shear,  $V_a = 40$  kips  $Unity = \frac{V_a}{Shear \ capacity}$  $=\frac{40}{50}$ 

SDS2

Project: ASD16ValidationExamples

Fabricator: ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

This beam (continued) = 0.8Bearing on beam web,  $\frac{P_{brg}}{\Omega}$  = Shear capacity = 50 kipsThis beam unity ratio, U = Unity= 0.8Other beam C = 3.07968Total number of bolts,  $N = n \cdot m$  $= 4 \cdot 1$ = 4 Number of edge bolts,  $N_{edge} = m$ = 1 Number of interior bolts,  $N_{int} = N - m$ = 4 - 1= 3Total length of bolt group,  $s_{total} = 9$  in Bolt area,  $A_b = 0.60132 in^2$ Allowable shear stress,  $F_{nv} = 54 \ ksi$  $\Omega = 2$ Bolt shear capacity,  $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$  $= \frac{54 \cdot 0.60132 \cdot 1}{2}$ = 16.2357 kips Hole diameter,  $d_h = 0.9375$  in  $\Omega = 2$ Bolt bearing capacity,  $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t_{w,s} \cdot F_{u,s}}{\Omega}$  $= \frac{2.4 \cdot 0.875 \cdot 0.395 \cdot 65}{2} = 26.9587 \ kips$ **Interior bolt capacity** Vertical bolt spacing, s = 3 in Clear distance from bolt hole to bolt hole,  $L_{c,int} = s - d_h$ = 3 - 0.9375= 2.0625 in $\Omega = 2$ Tearout load capacity,  $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t_{w,s} \cdot F_{u,s}}{\Omega}$ 



© SDS2 All rights reserved

Generated by SDS2 v2025.03 on Fri Oct 11 13:37:34 2024

Project: ASD16ValidationExamples

Fabricator: ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

Interior bolt capacity (continued)  $=\frac{1.2 \cdot 2.0625 \cdot 0.395 \cdot 65}{2}$ = 31.7728 kips Controlling bearing/tearout strength of interior bolt,  $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (31.7728, 26.9587, 16.2357)= 16.2357 kipsEdge bolt capacity Tear out will not occur, so the bearing capacity controls. Controlling bearing/tearout strength of exterior bolt,  $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (26.9587, 16.2357)= 16.2357 kipsAverage bolt bearing/tearout,  $\frac{R_{v,ave}}{\Omega} = \frac{\left(\frac{R_{n,e}}{\Omega} \cdot N_{edge} + \frac{\kappa_{n,i}}{\Omega} \cdot N_{int}\right)}{N}$  $= \frac{(16.2357 \cdot 1 + 16.2357 \cdot 3)}{4}$ = 16.2357 kips Shear capacity,  $\frac{V_n}{\Omega} = N \cdot \frac{R_{y,ave}}{\Omega} \cdot C$  $= 1 \cdot 16.2357 \cdot 3.07968$ = 50.0006 kipsShear capacity =  $\frac{V_n}{\Omega}$ = 50.0006 kipsApplied member shear,  $V_a = 40$  kips  $Unity = \frac{V_a}{Shear\ capacity}$  $=\frac{40}{50}$ = 0.8 Bearing on other web,  $\frac{P_{brg,s}}{\Omega} = Shear \ capacity$ = 50 kipsOther beam unity ratio,  $U_o = Unity$ = 0.8Unity = max  $(U, U_0)$ = max (0.8, 0.8)= 0.8



#### Bolt bearing on beam web (20). Reference J3.11 (continued)

Shear capacity = min  $\left(\frac{P_{brg}}{\Omega}, \frac{P_{brg,s}}{\Omega}\right)$ = min (50,50) = 50 kips 50.0 kips  $\geq$  40 kips (OK) 0.800  $\leq$  1 (OK)

#### Bolt shear of web bolts (3). Reference J3.7, J3.9

Number of shear planes,  $N_s = 1$ Coefficient, C = 3.07968Bolt area,  $A_b = 0.60132 in^2$ Allowable shear stress,  $F_{nv} = 54 \ ksi$  $\Omega = 2$ Bolt shear capacity,  $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$  $= \frac{54 \cdot 0.60132 \cdot 1}{2}$ = 16.2357 kips Shear capacity =  $C \cdot \frac{R_{n,v}}{\Omega}$  $= 3.07968 \cdot 16.2357$ = 50.0006 kipsApplied member shear,  $V_a = 40 kips$  $Unity = \frac{i}{Shear \ capacity}$  $V_a$  $=\frac{40}{50}$ = 0.8 $50.0 \ kips \ge 40 \ kips$  (OK)  $0.800 \le 1$  (OK)

#### Shear rupture of web plate(s) (21). Reference J4.2

Connection tensile strength,  $F_{u,conn} = 65 \ ksi$ FS bolt rows,  $n_{FS} = 4$ NS bolt rows,  $n_{NS} = 4$ FS connection thickness,  $t_{fs} = 0 \ in$ NS connection thickness,  $t_{ns} = 0.375 \ in$ FS connection depth,  $d_{fs} = 0 \ in$ NS connection depth,  $d_{ns} = 12 \ in$ Hole diameter,  $d_h = 1 \ in$ NS Net shear area,  $A_{nv,ns} = t_{ns} \cdot (d_{ns} - n_{NS} \cdot d_h)$  $= 0.375 \cdot (12 - 4 \cdot 1)$ 



### Shear rupture of web plate(s) (21). Reference J4.2 (continued)

 $= 3 in^{2}$ FS Net shear area,  $A_{nv,fs} = t_{fs} \cdot (d_{fs} - n_{FS} \cdot d_h)$  $= 0 \cdot (0 - 4 \cdot 1)$  $= 0 in^{2}$ Total net shear area,  $A_{nvtotal} = A_{nv,ns} + A_{nvfs}$ = 3 + 0 $= 3 in^{2}$  $\Omega = 2$ Shear capacity,  $\frac{V_n}{\Omega} = \frac{0.6 \cdot F_{u,conn} \cdot A_{nv,total}}{\Omega}$  $=\frac{0.6\cdot 65\cdot 3}{2}$  $= 58.5 \ \tilde{k}ips$ Shear capacity =  $\frac{V_n}{\Omega}$ = 58.5 kipsApplied member shear,  $V_a = 40$  kips  $Unity = \frac{V_a}{Shear \ capacity}$  $=\frac{40}{58.5}$ = 0.68376158.5 kips  $\geq$  40 kips (OK)  $0.684 \le 1$  (OK)

#### Block shear rupture of web plate(s) (6). Reference J4.3

Plate thickness,  $t_{pl} = 0.375$  in Yield stress,  $F_y = 50$  ksi Tensile strength,  $F_u = 65$  ksi Bolt column spacing,  $s_{col} = 5$  in Bolt row spacing, s = 3 in Bolt rows, n = 4Column edge distance,  $L_{eh} = 1.5$  in Row edge distance,  $L_{ev} = 1.5$  in Bolt columns, m = 1Hole diameter,  $d_h = 1$  in Hole length,  $l_h = 1$  in Total length of bolt group,  $s_{total} = 9$  in Gross shear area,  $A_{gv} = t_{pl} \cdot (s_{total} + L_{ev})$  $= 0.375 \cdot (9 + 1.5)$ = 3.9375 in<sup>2</sup>



 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.A-20

#### Block shear rupture of web plate(s) (6). Reference J4.3 (continued)

Net shear area,  $A_{nv} = t_{pl} \cdot (s_{total} + L_{ev}) - t_{pl} \cdot (n - 0.5) \cdot d_h$  $= 0.375 \cdot (9 + 1.5) - 0.375 \cdot (4 - 0.5) \cdot 1$  $= 2.625 in^2$ Gross tensile area,  $A_{gt} = t_{pl} \cdot (s_{col} \cdot (m - 1) + L_{eh})$  $= 0.375 \cdot (5 \cdot (1 - 1) + 1.5)$  $= 0.5625 in^2$ Net tensile area,  $A_{nt} = t_{pl} \cdot (s_{col} \cdot (m-1) + L_{eh}) - t_{pl} \cdot (m-0.5) \cdot l_h$  $= 0.375 \cdot (5 \cdot (1 - 1) + 1.5) - 0.375 \cdot (1 - 0.5) \cdot 1$  $= 0.375 in^2$ Reduction coefficient,  $U_{bs} = 1$ Shear yield load,  $R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$  $= 0.6 \cdot 50 \cdot 3.9375$ = 118.125 kipsShear rupture load,  $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$  $= 0.6 \cdot 65 \cdot 2.625$ = 102.375 kipsTension load,  $R_t = U_{hs} \cdot F_u \cdot A_{nt}$  $= 1 \cdot 65 \cdot 0.375$ = 24.375 kipsNominal block shear capacity,  $R_n = min (R_{gv}, R_{nv}) + R_t$ = min (118.125, 102.375) + 24.375= 126.75 kips $\Omega = 2$ Shear capacity =  $\frac{R_n}{\Omega}$  $=\frac{126.75}{2}$  $= 63.\overline{3}75 \ kips$ Applied member shear,  $V_a = 40$  kips  $Unity = \frac{r_{a}}{Shear \ capacity}$  $=\frac{40}{63.4}$ = 0.630915 $63.4 \text{ kips} \ge 40 \text{ kips}$ **(OK)** 

### 0.631 ≤ 1 **(OK)**

### Shear yielding of web plate(s) (15). Reference J4.2

Connection yield stress,  $F_{y,conn} = 50 \ ksi$ FS connection thickness,  $t_{fs} = 0 \ in$ NS connection thickness,  $t_{ns} = 0.375 \ in$  

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.A-20

#### Shear yielding of web plate(s) (15). Reference J4.2 (continued)

FS connection depth,  $d_{fs} = 0$  in NS connection depth,  $d_{ns} = 12$  in Gross shear area,  $A_{gv} = d_{ns} \cdot t_{ns} + d_{fs} \cdot t_{fs}$   $= 12 \cdot 0.375 + 0 \cdot 0$  = 4.5 in<sup>2</sup>  $\Omega = 1.5$ Shear capacity  $= \frac{0.6 \cdot F_{y,conn} \cdot A_{gv}}{\Omega}$   $= \frac{0.6 \cdot 50 \cdot 4.5}{1.5}$  = 90 kips Applied member shear,  $V_a = 40$  kips Unity  $= \frac{V_a}{Shear \ capacity}$   $= \frac{40}{90}$  = 0.44444490.0 kips  $\ge 40$  kips (OK)  $0.444 \le 1$  (OK)

#### Flexure of web plate(s) (19). Reference F11

 $F_{u,conn} = 65 \ ksi$ Plate yield stress,  $F_{y,p} = 50 \ ksi$ Bolt row spacing,  $s = 3 \ in$ Bolt rows, n = 4Number of connection sides, N = 1Plate thickness,  $t_{pl} = 0.375 \ in$ Connection depth,  $d_{pl} = 12 \ in$ Eccentricity in x-direction,  $e_x = 2.5 \ in$ Hole diameter,  $d_h = 1 \ in$ 

Gross moment capacity Steel modulus of elasticity,  $E = 29000 \ ksi$ Unbraced Length,  $L_b = e_x$   $= 2.5 \ in$ Plastic section modulus,  $Z = \frac{t_{pl} \cdot d_{pl}^2}{4}$   $= \frac{0.375 \cdot 12^2}{4}$   $= 13.5 \ in^3$ Elastic section modulus,  $S = \frac{t_{pl} \cdot d_{pl}^2}{6}$ 



Fabricator: ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

Gross moment capacity (continued) = <u>0.375 · 12<sup>2</sup></u>  $= 9 in^{3}$ Plastic bending moment,  $M_p = \frac{F_{y,p} \cdot Z}{12}$  $= \frac{50 \cdot 13.5}{12} \\= 56.25 \ kip \cdot ft$  $|(M_p = 56.25 \ kip \cdot ft)| \le \left(\frac{1.5 \cdot F_{y,p} \cdot S}{12} = \frac{1.5 \cdot 50 \cdot 9}{12} = 56.25 \ kip \cdot ft\right)|$  $\left|\frac{L_b \cdot d_{pl}}{t_{pl}^2} = \frac{2.5 \cdot 12}{0.375^2} = 213.333\right| > \left(\frac{0.08 \cdot E}{F_{y,p}} = \frac{0.08 \cdot 29000}{50} = 46.4\right)$ Lateral-torsional buckling modification factor,  $C_b = 1.84$  $\left|\frac{L_b \cdot d_{pl}}{t_{pl}^2} = \frac{2.5 \cdot 12}{0.375^2} = 213.333\right| \le \left(\frac{1.9 \cdot E}{F_{y,p}} = \frac{1.9 \cdot 29000}{50} = 1102\right)$ Flexural yield moment,  $M_y = \frac{F_{y,p} \cdot S}{12}$  $= \frac{50 \cdot 9}{12}$  $= 37.5 \ kip \cdot ft$ Nominal flexural strength,  $M_n = min \left[ C_b \cdot \left( 1.52 - 0.274 \cdot \left( \frac{L_b \cdot d_{pl}}{t_{pl}^2} \right) \cdot \left( \frac{F_{y,p}}{E} \right) \right] \cdot M_{y,y} M_p \right]$  $= \min\left(1.84 \cdot \left(1.52 - 0.274 \cdot \left(\frac{2.5 \cdot 12}{0.375^2}\right) \cdot \left(\frac{50}{29000}\right)\right) \cdot 37.5, 56.25\right)$  $= 56.25 \ kip \cdot ft$  $\Omega = 1.67$ Gross moment capacity,  $\frac{M_{n,gross}}{\Omega} = \frac{N \cdot M_n}{\Omega}$  $= \frac{1 \cdot 56.25}{1.67} \\= 33.6826 \ kip \cdot ft$ Net moment capacity  $\Omega = 2$ Bending stress,  $\frac{F_b}{\Omega} = \frac{F_{u,conn}}{\Omega}$  $=\frac{65}{2}$ = 32.5 ksi Total length of bolt group,  $s_{total} = 9$  in Row edge distance top,  $L_{e,top} = \frac{|d_{pl} - s_{total}|}{2}$ 



Project:ASD16ValidationExamplesFabricator:ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

Page 20

Net moment capacity (continued)  $=\frac{(12-9)}{2}$ = 1.5 inRow edge distance bottom,  $L_{e,bot} = L_{e,top}$ = 1.5 inBolt row spacing, s = 3 in Net plastic section modulus,  $Z_{x,net} = \frac{t_{pl} \cdot (s - d_h) \cdot n^2 \cdot s}{4}$  $= \frac{0.375 \cdot (3 - 1) \cdot 4^2 \cdot 3}{4}$ = 9 in<sup>3</sup> Bolt row spacing, s = 3 in Deduction of net section modulus due to the bolt holes,  $S_{deduct} = \frac{\left(\frac{S^2 \cdot n \cdot (n^2 - 1) \cdot t_{pl} \cdot d_h}{6}\right)}{d_{l}}$  $=\frac{\left(\frac{3^{2}\cdot 4\cdot (4^{2}-1)\cdot 0.375\cdot 1}{6}\right)}{12}$  $= 2.8125 in^3$ Net elastic section modulus,  $S_{x,net} = \frac{t_{pl} \cdot d_{pl}^2}{6} - S_{deduct}$  $= \frac{0.375 \cdot 12^2}{6} - 2.8125$  $= 6.1875 in^3$  $|Z_{x,net} = 9 \ in^3| \le (1.5 \cdot S_{x,net} = 1.5 \cdot 6.1875 = 9.28125 \ in^3)$ Net moment capacity,  $\frac{M_{n,net}}{\Omega} = \frac{N \cdot \frac{F_b}{\Omega} \cdot Z_{x,net}}{12}$  $= \frac{1 \cdot 32.5 \cdot 9}{12}$ = 24.375 *kip* · *ft*, Reference: (9-8) Shear capacity =  $\left(\frac{\min\left(\frac{M_{n,gross}}{\Omega},\frac{M_{n,net}}{\Omega}\right)}{e_x}\right) \cdot 12$  $= \left(\frac{\min(33.6826, 24.375)}{2.5}\right) \cdot 12$ = 117 kips



#### Flexure of web plate(s) (19). Reference F11 (continued)

Applied member shear,  $V_a = 40 kips$ 

 $Unity = \frac{V_a}{Shear \ capacity}$  $=\frac{40}{117}$ = 0.34188117.0 kips  $\geq$  40 kips (OK)  $0.342 \le 1$  (OK)

#### Shear yielding of beam web (2). Reference G2.1

This beam depth, d = 23.7 in This beam web thickness,  $t_w = 0.415$  in This beam yield stress,  $F_v = 50 \ ksi$ Other beam depth,  $d_s = 23.6$  in Other beam web thickness,  $t_{ws} = 0.395$  in Other beam yield stress,  $F_{y,s} = 50 \ ksi$ 

#### <u>This beam</u>

Applied member shear,  $V_a = 40$  kips  $\Omega = 1.5$ Allowable shear stress,  $\frac{F_v}{Q} = \frac{0.6 \cdot F_y}{Q}$  $= \frac{0.6 \cdot 50}{1.5}$  $= 20 \ ksi$ Web shear area,  $A_w = d \cdot t_w$  $= 23.7 \cdot 0.415$  $= 9.8355 in^2$  $Unity = \frac{V_a}{\frac{F_v}{\Omega} \cdot A_w}$  $=\frac{40}{20 \cdot 9.8355} = 0.203345$ Shear capacity =  $\frac{F_v}{\Omega} \cdot A_w$  $= 20 \cdot 9.8355$  $= 196.71 \ kips$ Beam gross shear,  $\frac{V_g}{\Omega} = Shear \ capacity$ = 196.7 kipsThis beam unity ratio, U = Unity= 0.203345





Project:ASD16ValidationExamplesFabricator:ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

#### <u>Other beam</u>

Applied member shear,  $V_a = 40 \ kips$  $\Omega = 1.5$ Allowable shear stress,  $\frac{F_v}{\Omega} = \frac{0.6 \cdot F_{y,s}}{\Omega}$  $= \frac{0.6 \cdot 50}{1.5}$  $= 20 \ ksi$ Web shear area,  $A_w = d_s \cdot t_{ws}$  $= 23.6 \cdot 0.395$  $= 9.322 in^{2}$  $Unity = \frac{V_a}{\frac{F_v}{\Omega} \cdot A_w}$  $=\frac{40}{20 \cdot 9.322} \\= 0.214546$ Shear capacity =  $\frac{F_v}{\Omega} \cdot A_w$  $= 20 \cdot 9.322$  $= 186.44 \ kips$ Other beam gross shear,  $\frac{V_{g,s}}{\Omega} = Shear \ capacity$ = 186.4 kipsOther beam unity ratio,  $U_o = Unity$ = 0.214546Unity = max  $(U, U_o)$ = max (0.203345, 0.214546)= 0.214546Shear capacity = min  $\left(\frac{V_g}{\Omega}, \frac{V_{gs}}{\Omega}\right)$ = min (196.7, 186.4)= 186.4 kips186.4 kips  $\geq$  40 kips (OK)



 $0.215 \le 1$  (OK)



# Beam B\_7 [8]

### Design method

- AISC Steel Construction Manual, Sixteenth Edition (ASD)
- AISC 360-22

### Overview

| Section size:    | W24x55    |
|------------------|-----------|
| Sequence:        | 1         |
| ABM:             | N/Assign  |
| Plan length:     | 25-0      |
| Camber:          | 0.00 in   |
| Span length:     | 25-0      |
| Slope:           | 0.00 °    |
| Material length: | 24-11 3/4 |
| Plan rotation:   | 0.00 °    |

### Section properties

| Material grade:                                                 | A992                 |
|-----------------------------------------------------------------|----------------------|
| Yield stress, <i>F</i> <sub>y</sub> :                           | 50 ksi               |
| Tensile strength, <i>Fu</i> :                                   | 65 ksi               |
| Depth, <i>d</i> :                                               | 23.6 in              |
| Web thickness, <i>t<sub>w</sub></i> :                           | 0.395 in             |
| Flange width, <i>b<sub>f</sub></i> .                            | 7.01 in              |
| Flange thickness, <i>tj</i> :                                   | 0.505 in             |
| Design k distance, <i>k<sub>des</sub></i> :                     | 1.01 in              |
| Detail k distance, <i>k<sub>det</sub></i> :                     | 1.4375 in            |
| Distance between web toes of fillets, <i>T</i> :                | 20.725 in            |
| Moment of inertia about the major axis, <i>I</i> <sub>x</sub> : | 1350 in <sup>4</sup> |





### Design summary

### Left end

| Connection:   | Splice plate                  |  |
|---------------|-------------------------------|--|
|               | Plates on left end, Near side |  |
| Elevation:    | 0                             |  |
| Minus Dim:    | 0.25 in                       |  |
| Mtrl Setback: | 0.25 in (AUTO)                |  |
| Std Detail:   | None                          |  |
| Web:          | Web vertical                  |  |
| End rotation: | 0.00 °                        |  |
| Shear:        | 40.0 kips                     |  |
| Moment:       | 0.0 kip·ft (AUTO)             |  |
| Tension:      | 0.0 kips                      |  |
| Compress:     | 0.0 kips                      |  |
| Tying:        | 0.0 kips (AUTO)               |  |



# **B\_7** [8] Connection strength check: LEFT END

### Member end summary

### **Connecting nodes**

<u>Node 1</u>

| Beam:                                             | B_8 [7]                      |
|---------------------------------------------------|------------------------------|
| Section size:                                     | W24x68                       |
| End 0 elevation:                                  | 0                            |
| End 1 elevation:                                  | 0                            |
| Support intersection elevation:                   | 0                            |
| Supporting beam<br>rotation:                      | 0.00 degrees                 |
|                                                   | (looking toward left<br>end) |
| Material grade:                                   | A992                         |
| Detail k distance,<br><sub>k<sub>det</sub>:</sub> | 1.875 in                     |
| Design k distance,<br><i>k<sub>des</sub></i> :    | 1.09 in                      |
| Depth, <i>d</i> :                                 | 23.7 in                      |
| Web thickness, <i>t<sub>w</sub></i> :             | 0.415 in                     |
| Flange thickness, <i>t<sub>f</sub></i> :          | 0.585 in                     |

### **Design loads**

Shear: 40.0 kips

### **Design load notes**

- Non-composite design
- Reaction has been input
- Design reaction is 37.4 % of the allowable uniform steel beam load.



### **Connection summary**

- BOLTED BEAM SHEAR PLATE SPLICE
- (Splice plate on one side of web)

### **Connection details**

| Plates:                 | Grade:                                 | A572-50        |
|-------------------------|----------------------------------------|----------------|
|                         | Tensile strength, $F_u$ :              | 65 ksi         |
|                         | Yield stress, $F_y$ :                  | 50 ksi         |
| Web plates:             | Thickness, <i>t</i> :                  | 0.375 in       |
|                         | Depth, <i>d</i> :                      | 12 in          |
| Web bolts:              | Bolt type:                             | A325N          |
|                         | Hole type in connection:               | Standard round |
|                         | Bolt diameter, <i>d</i> <sub>b</sub> : | 7/8            |
|                         | Bolt rows, <i>n</i> :                  | 4              |
|                         | Bolt row spacing, <i>s</i> :           | 3 in           |
|                         | Bolt columns, <i>m</i> :               | 1              |
| Gap between members, g: | 0.5 in                                 |                |

### **Connection design lock summary**

| Locked Via Member Edit: | 20  |
|-------------------------|-----|
| (at dd) Not Locked:     | 106 |



### **Expanded design calculation**

### Bolt bearing on web plate(s) (20). Reference J3.11

Number of shear planes,  $N_s = 1$ Number of sides, N = 1Row edge distance,  $L_e = 1.5$  in Connection thickness, t = 0.375 in Connection tensile strength,  $F_u = 65 \ ksi$ Bolt row spacing, s = 3 in Bolt columns, m = 1Bolt rows, n = 4Bolt diameter,  $d_b = 0.875$  in C = 3.07968Total number of bolts,  $N = n \cdot m$  $= 4 \cdot 1$ = 4Number of edge bolts,  $N_{edge} = m$ = 1 Number of interior bolts,  $N_{int} = N - m$ = 4 - 1= 3Total length of bolt group,  $s_{total} = 9$  in Bolt area,  $A_{b} = 0.60132 in^{2}$ Allowable shear stress,  $F_{nv} = 54 \ ksi$  $\Omega = 2$ Bolt shear capacity,  $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$  $= \frac{54 \cdot 0.60132 \cdot 1}{2}$ = 16.2357 kips Hole diameter,  $d_h = 0.9375$  in  $\Omega = 2$ Bolt bearing capacity,  $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t \cdot F_u}{\Omega}$  $=\frac{2.4\cdot0.875\cdot0.375\cdot65}{25\,5020\,12}$ = 25.5938 kips**Interior bolt capacity** Bolt row spacing, s = 3 in Clear distance from bolt hole to bolt hole,  $L_{c.int} = s - d_h$ = 3 - 0.9375



Project: ASD16ValidationExamples

Fabricator:ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

Interior bolt capacity (continued) = 2.0625 in  $\Omega = 2$ Tearout load capacity,  $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t \cdot F_u}{\Omega}$  $= \frac{1.2 \cdot 2.0625 \cdot 0.375 \cdot 65}{2}$ = 30.1641 kips Controlling bearing/tearout strength of interior bolt,  $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (30.1641, 25.5938, 16.2357)= 16.2357 kipsEdge bolt capacity Clear distance from hole to edge of material,  $L_{c.edge} = L_e - 0.5 \cdot d_h$  $= 1.5 - 0.5 \cdot 0.9375$ = 1.03125 in  $\Omega = 2$ Tearout load capacity,  $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,edge} \cdot t \cdot F_u}{\Omega}$  $= \frac{1.2 \cdot 1.03125 \cdot 0.375 \cdot 65}{2}$ = 15.082 kips Controlling bearing/tearout strength of exterior bolt,  $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{K_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (15.082, 25.5938, 16.2357) $= 15.082 \ kips$ Average bolt bearing/tearout,  $\frac{R_{v,ave}}{\Omega} = \frac{\left(\frac{R_{n,e}}{\Omega} \cdot N_{edge} + \frac{R_{n,i}}{\Omega} \cdot N_{int}\right)}{N}$  $=\frac{(15.082\cdot1+16.2357\cdot3)}{4}$  $= 15.9472 \ kips$ Shear capacity,  $\frac{V_n}{\Omega} = N \cdot \frac{R_{y,ave}}{\Omega} \cdot C$  $= 1 \cdot 15.9472 \cdot 3.07968$ = 49.1124 kipsShear capacity =  $\frac{V_n}{\Omega}$ = 49.1124 kipsApplied member shear,  $V_a = 40$  kips  $Unity = \frac{V_a}{Shear \ capacity}$ 



### Bolt bearing on web plate(s) (20). Reference J3.11 (continued)

 $= \frac{40}{49.1}$ = 0.814664 49.1 kips  $\ge$  40 kips (OK) 0.815  $\le$  1 (OK)

### Bolt bearing on beam web (20). Reference J3.11

Bolt diameter,  $d_b = 0.875$  in Number of shear planes,  $N_s = 1$ Number of sides, N = 1Bolt rows, n = 4Bolt columns, m = 1Vertical bolt spacing, s = 3 in This beam tensile strength,  $F_u = 65$  ksi This beam web thickness,  $t_w = 0.395$  in Other beam tensile strength,  $F_{u,s} = 65$  ksi Other beam web thickness,  $t_{w,s} = 0.415$  in

#### <u>This beam</u>

C = 3.07968Total number of bolts,  $N = n \cdot m$  $= 4 \cdot 1$ = 4 Number of edge bolts,  $N_{edge} = m$ = 1 Number of interior bolts,  $N_{int} = N - m$ = 4 - 1= 3Total length of bolt group,  $s_{total} = 9$  in Bolt area,  $A_b = 0.60132 in^2$ Allowable shear stress,  $F_{nv} = 54 \ ksi$  $\Omega = 2$ Bolt shear capacity,  $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$ = <u>54 · 0.60132 · 1</u>  $=\frac{2}{16.2357 \text{ kips}}$ Hole diameter,  $d_h = 0.9375$  in  $\Omega = 2$ Bolt bearing capacity,  $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t_w \cdot F_u}{\Omega}$ 



Project: ASD16ValidationExamples

Fabricator: ASD16ValidationExamples

Report: Connection Cube Report for Ex. II.A-20

This beam (continued)  $= \frac{2.4 \cdot 0.875 \cdot 0.395 \cdot 65}{2}$ = 26.9587 kips **Interior bolt capacity** Vertical bolt spacing, s = 3 in Clear distance from bolt hole to bolt hole,  $L_{c.int} = s - d_h$ = 3 - 0.9375= 2.0625 in  $\Omega = 2$ Tearout load capacity,  $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t_w \cdot F_u}{\Omega}$  $= \frac{1.2 \cdot 2.0625 \cdot 0.395 \cdot 65}{2}$ = 31.7728 kips Controlling bearing/tearout strength of interior bolt,  $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (31.7728, 26.9587, 16.2357)= 16.2357 kips**Edge bolt capacity** Tear out will not occur, so the bearing capacity controls. Controlling bearing/tearout strength of exterior bolt,  $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (26.9587, 16.2357) $= 16.2357 \ kips$ Average bolt bearing/tearout,  $\frac{R_{v,ave}}{\Omega} = \frac{\left(\frac{R_{n,e}}{\Omega} \cdot N_{edge} + \frac{R_{n,i}}{\Omega} \cdot N_{int}\right)}{N}$  $=\frac{(16.2357\cdot 1+16.2357\cdot 3)}{4}$ = 16.2357 *kips* Shear capacity,  $\frac{V_n}{\Omega} = N \cdot \frac{R_{v,ave}}{\Omega} \cdot C$  $= 1 \cdot 16.2357 \cdot 3.07968$ = 50.0006 kipsShear capacity =  $\frac{V_n}{\Omega}$ = 50.0006 kipsApplied member shear,  $V_a = 40$  kips  $Unity = \frac{V_a}{Shear \ capacity}$  $=\frac{40}{50}$ 

SDS2

Project: ASD16ValidationExamples

Fabricator: ASD16ValidationExamples

Report: Connection Cube Report for Ex. II.A-20

This beam (continued) = 0.8Bearing on beam web,  $\frac{P_{brg}}{\Omega}$  = Shear capacity = 50 kipsThis beam unity ratio, U = Unity= 0.8Other beam C = 3.07968Total number of bolts,  $N = n \cdot m$  $= 4 \cdot 1$ = 4 Number of edge bolts,  $N_{edge} = m$ = 1 Number of interior bolts,  $N_{int} = N - m$ = 4 - 1= 3Total length of bolt group,  $s_{total} = 9$  in Bolt area,  $A_b = 0.60132 in^2$ Allowable shear stress,  $F_{nv} = 54 \ ksi$  $\Omega = 2$ Bolt shear capacity,  $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$  $= \frac{54 \cdot 0.60132 \cdot 1}{2}$ = 16.2357 kips Hole diameter,  $d_h = 0.9375$  in  $\Omega = 2$ Bolt bearing capacity,  $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t_{w,s} \cdot F_{u,s}}{\Omega}$  $= \frac{2.4 \cdot 0.875 \cdot 0.415 \cdot 65}{2} = 28.3238 \ kips$ **Interior bolt capacity** Vertical bolt spacing, s = 3 in Clear distance from bolt hole to bolt hole,  $L_{c,int} = s - d_h$ = 3 - 0.9375= 2.0625 in $\Omega = 2$ Tearout load capacity,  $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t_{w,s} \cdot F_{u,s}}{\Omega}$ 

SDS2

Project: ASD16ValidationExamples

Fabricator: ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

Interior bolt capacity (continued)  $=\frac{1.2\cdot 2.0625\cdot 0.415\cdot 65}{2}$ = 33.3816 kips Controlling bearing/tearout strength of interior bolt,  $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (33.3816, 28.3238, 16.2357)= 16.2357 kipsEdge bolt capacity Tear out will not occur, so the bearing capacity controls. Controlling bearing/tearout strength of exterior bolt,  $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (28.3238, 16.2357)= 16.2357 kipsAverage bolt bearing/tearout,  $\frac{R_{v,ave}}{\Omega} = \frac{\left(\frac{R_{n,e}}{\Omega} \cdot N_{edge} + \frac{\kappa_{n,i}}{\Omega} \cdot N_{int}\right)}{N}$  $= \frac{(16.2357 \cdot 1 + 16.2357 \cdot 3)}{4}$ = 16.2357 kips Shear capacity,  $\frac{V_n}{\Omega} = N \cdot \frac{R_{y,ave}}{\Omega} \cdot C$  $= 1 \cdot 16.2357 \cdot 3.07968$ = 50.0006 kipsShear capacity =  $\frac{V_n}{\Omega}$ = 50.0006 kipsApplied member shear,  $V_a = 40$  kips  $Unity = \frac{V_a}{Shear\ capacity}$  $=\frac{40}{50}$ = 0.8 Bearing on other web,  $\frac{P_{brg,s}}{\Omega} = Shear \ capacity$ = 50 kipsOther beam unity ratio,  $U_o = Unity$ = 0.8Unity = max  $(U, U_0)$ = max (0.8, 0.8)= 0.8



#### Bolt bearing on beam web (20). Reference J3.11 (continued)

Shear capacity = min  $\left(\frac{P_{brg}}{\Omega}, \frac{P_{brg,s}}{\Omega}\right)$ = min (50,50) = 50 kips 50.0 kips  $\geq$  40 kips (OK) 0.800  $\leq$  1 (OK)

#### Bolt shear of web bolts (3). Reference J3.7, J3.9

Number of shear planes,  $N_s = 1$ Coefficient, C = 3.07968Bolt area,  $A_b = 0.60132 in^2$ Allowable shear stress,  $F_{nv} = 54 \ ksi$  $\Omega = 2$ Bolt shear capacity,  $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$  $= \frac{54 \cdot 0.60132 \cdot 1}{2}$ = 16.2357 kips Shear capacity =  $C \cdot \frac{R_{n,v}}{\Omega}$  $= 3.07968 \cdot 16.2357$ = 50.0006 kipsApplied member shear,  $V_a = 40 kips$  $Unity = \frac{i}{Shear \ capacity}$  $V_a$  $=\frac{40}{50}$ = 0.8 $50.0 \ kips \ge 40 \ kips$  (OK)  $0.800 \le 1$  (OK)

#### Shear rupture of web plate(s) (21). Reference J4.2

Connection tensile strength,  $F_{u,conn} = 65 \ ksi$ FS bolt rows,  $n_{FS} = 4$ NS bolt rows,  $n_{NS} = 4$ FS connection thickness,  $t_{fs} = 0 \ in$ NS connection thickness,  $t_{ns} = 0.375 \ in$ FS connection depth,  $d_{fs} = 0 \ in$ NS connection depth,  $d_{ns} = 12 \ in$ Hole diameter,  $d_h = 1 \ in$ NS Net shear area,  $A_{nv,ns} = t_{ns} \cdot (d_{ns} - n_{NS} \cdot d_h)$  $= 0.375 \cdot (12 - 4 \cdot 1)$ 



### Shear rupture of web plate(s) (21). Reference J4.2 (continued)

 $= 3 in^{2}$ FS Net shear area,  $A_{nv,fs} = t_{fs} \cdot (d_{fs} - n_{FS} \cdot d_h)$  $= 0 \cdot (0 - 4 \cdot 1)$  $= 0 in^{2}$ Total net shear area,  $A_{nvtotal} = A_{nv,ns} + A_{nvfs}$ = 3 + 0 $= 3 in^{2}$  $\Omega = 2$ Shear capacity,  $\frac{V_n}{\Omega} = \frac{0.6 \cdot F_{u,conn} \cdot A_{nv,total}}{\Omega}$  $=\frac{0.6\cdot 65\cdot 3}{2}$  $= 58.5 \ \tilde{k}ips$ Shear capacity =  $\frac{V_n}{\Omega}$ = 58.5 kipsApplied member shear,  $V_a = 40$  kips  $Unity = \frac{V_a}{Shear \ capacity}$  $=\frac{40}{58.5}$ = 0.68376158.5 kips  $\geq$  40 kips (OK)  $0.684 \le 1$  (OK)

#### Block shear rupture of web plate(s) (6). Reference J4.3

Plate thickness,  $t_{pl} = 0.375$  in Yield stress,  $F_y = 50$  ksi Tensile strength,  $F_u = 65$  ksi Bolt column spacing,  $s_{col} = 5$  in Bolt row spacing, s = 3 in Bolt rows, n = 4Column edge distance,  $L_{eh} = 1.5$  in Row edge distance,  $L_{ev} = 1.5$  in Bolt columns, m = 1Hole diameter,  $d_h = 1$  in Hole length,  $l_h = 1$  in Total length of bolt group,  $s_{total} = 9$  in Gross shear area,  $A_{gv} = t_{pl} \cdot (s_{total} + L_{ev})$  $= 0.375 \cdot (9 + 1.5)$ = 3.9375 in<sup>2</sup>



 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.A-20

#### Block shear rupture of web plate(s) (6). Reference J4.3 (continued)

Net shear area,  $A_{nv} = t_{pl} \cdot (s_{total} + L_{ev}) - t_{pl} \cdot (n - 0.5) \cdot d_h$  $= 0.375 \cdot (9 + 1.5) - 0.375 \cdot (4 - 0.5) \cdot 1$  $= 2.625 in^2$ Gross tensile area,  $A_{gt} = t_{pl} \cdot (s_{col} \cdot (m - 1) + L_{eh})$  $= 0.375 \cdot (5 \cdot (1 - 1) + 1.5)$  $= 0.5625 in^2$ Net tensile area,  $A_{nt} = t_{pl} \cdot (s_{col} \cdot (m-1) + L_{eh}) - t_{pl} \cdot (m-0.5) \cdot l_h$  $= 0.375 \cdot (5 \cdot (1 - 1) + 1.5) - 0.375 \cdot (1 - 0.5) \cdot 1$  $= 0.375 in^2$ Reduction coefficient,  $U_{bs} = 1$ Shear yield load,  $R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$  $= 0.6 \cdot 50 \cdot 3.9375$ = 118.125 kipsShear rupture load,  $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$  $= 0.6 \cdot 65 \cdot 2.625$ = 102.375 kipsTension load,  $R_t = U_{hs} \cdot F_u \cdot A_{nt}$  $= 1 \cdot 65 \cdot 0.375$ = 24.375 kipsNominal block shear capacity,  $R_n = min (R_{gv}, R_{nv}) + R_t$ = min (118.125, 102.375) + 24.375= 126.75 kips $\Omega = 2$ Shear capacity =  $\frac{R_n}{\Omega}$  $=\frac{126.75}{2}$  $= 63.\overline{3}75 \ kips$ Applied member shear,  $V_a = 40$  kips  $Unity = \frac{r_{a}}{Shear \ capacity}$  $=\frac{40}{63.4}$ = 0.630915 $63.4 \text{ kips} \ge 40 \text{ kips}$ **(OK)** 

### 0.631 ≤ 1 **(OK)**

### Shear yielding of web plate(s) (15). Reference J4.2

Connection yield stress,  $F_{y,conn} = 50 \ ksi$ FS connection thickness,  $t_{fs} = 0 \ in$ NS connection thickness,  $t_{ns} = 0.375 \ in$  

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.A-20

#### Shear yielding of web plate(s) (15). Reference J4.2 (continued)

FS connection depth,  $d_{fs} = 0$  in NS connection depth,  $d_{ns} = 12$  in Gross shear area,  $A_{gv} = d_{ns} \cdot t_{ns} + d_{fs} \cdot t_{fs}$   $= 12 \cdot 0.375 + 0 \cdot 0$  = 4.5 in<sup>2</sup>  $\Omega = 1.5$ Shear capacity  $= \frac{0.6 \cdot F_{y,conn} \cdot A_{gv}}{\Omega}$   $= \frac{0.6 \cdot 50 \cdot 4.5}{1.5}$  = 90 kips Applied member shear,  $V_a = 40$  kips Unity  $= \frac{V_a}{Shear \ capacity}$   $= \frac{40}{90}$  = 0.44444490.0 kips  $\ge 40$  kips (OK)  $0.444 \le 1$  (OK)

#### Flexure of web plate(s) (19). Reference F11

 $F_{u,conn} = 65 \ ksi$ Plate yield stress,  $F_{y,p} = 50 \ ksi$ Bolt row spacing,  $s = 3 \ in$ Bolt rows, n = 4Number of connection sides, N = 1Plate thickness,  $t_{pl} = 0.375 \ in$ Connection depth,  $d_{pl} = 12 \ in$ Eccentricity in x-direction,  $e_x = 2.5 \ in$ Hole diameter,  $d_h = 1 \ in$ 

Gross moment capacity Steel modulus of elasticity,  $E = 29000 \ ksi$ Unbraced Length,  $L_b = e_x$   $= 2.5 \ in$ Plastic section modulus,  $Z = \frac{t_{pl} \cdot d_{pl}^2}{4}$   $= \frac{0.375 \cdot 12^2}{4}$   $= 13.5 \ in^3$ Elastic section modulus,  $S = \frac{t_{pl} \cdot d_{pl}^2}{6}$ 



Fabricator: ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

Gross moment capacity (continued) = <u>0.375 · 12<sup>2</sup></u>  $= 9 in^{3}$ Plastic bending moment,  $M_p = \frac{F_{y,p} \cdot Z}{12}$  $= \frac{50 \cdot 13.5}{12} \\= 56.25 \ kip \cdot ft$  $|(M_p = 56.25 \ kip \cdot ft)| \le \left(\frac{1.5 \cdot F_{y,p} \cdot S}{12} = \frac{1.5 \cdot 50 \cdot 9}{12} = 56.25 \ kip \cdot ft\right)|$  $\left|\frac{L_b \cdot d_{pl}}{t_{pl}^2} = \frac{2.5 \cdot 12}{0.375^2} = 213.333\right| > \left(\frac{0.08 \cdot E}{F_{y,p}} = \frac{0.08 \cdot 29000}{50} = 46.4\right)$ Lateral-torsional buckling modification factor,  $C_b = 1.84$  $\left|\frac{L_b \cdot d_{pl}}{t_{pl}^2} = \frac{2.5 \cdot 12}{0.375^2} = 213.333\right| \le \left(\frac{1.9 \cdot E}{F_{y,p}} = \frac{1.9 \cdot 29000}{50} = 1102\right)$ Flexural yield moment,  $M_y = \frac{F_{y,p} \cdot S}{12}$  $= \frac{50 \cdot 9}{12}$  $= 37.5 \ kip \cdot ft$ Nominal flexural strength,  $M_n = min \left[ C_b \cdot \left( 1.52 - 0.274 \cdot \left( \frac{L_b \cdot d_{pl}}{t_{pl}^2} \right) \cdot \left( \frac{F_{y,p}}{E} \right) \right] \cdot M_{y,y} M_p \right]$  $= \min\left(1.84 \cdot \left(1.52 - 0.274 \cdot \left(\frac{2.5 \cdot 12}{0.375^2}\right) \cdot \left(\frac{50}{29000}\right)\right) \cdot 37.5, 56.25\right)$  $= 56.25 \ kip \cdot ft$  $\Omega = 1.67$ Gross moment capacity,  $\frac{M_{n,gross}}{\Omega} = \frac{N \cdot M_n}{\Omega}$  $= \frac{1 \cdot 56.25}{1.67} \\= 33.6826 \ kip \cdot ft$ Net moment capacity  $\Omega = 2$ Bending stress,  $\frac{F_b}{\Omega} = \frac{F_{u,conn}}{\Omega}$  $=\frac{65}{2}$ = 32.5 ksi Total length of bolt group,  $s_{total} = 9$  in Row edge distance top,  $L_{e,top} = \frac{|d_{pl} - s_{total}|}{2}$ 



Project:ASD16ValidationExamplesFabricator:ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

Page 38

Net moment capacity (continued)  $=\frac{(12-9)}{2}$ = 1.5 inRow edge distance bottom,  $L_{e,bot} = L_{e,top}$ = 1.5 inBolt row spacing, s = 3 in Net plastic section modulus,  $Z_{x,net} = \frac{t_{pl} \cdot (s - d_h) \cdot n^2 \cdot s}{4}$  $= \frac{0.375 \cdot (3 - 1) \cdot 4^2 \cdot 3}{4}$ = 9 in<sup>3</sup> Bolt row spacing, s = 3 in Deduction of net section modulus due to the bolt holes,  $S_{deduct} = \frac{\left(\frac{S^2 \cdot n \cdot (n^2 - 1) \cdot t_{pl} \cdot d_h}{6}\right)}{d_{l}}$  $=\frac{\left(\frac{3^{2}\cdot 4\cdot (4^{2}-1)\cdot 0.375\cdot 1}{6}\right)}{12}$  $= 2.8125 in^3$ Net elastic section modulus,  $S_{x,net} = \frac{t_{pl} \cdot d_{pl}^2}{6} - S_{deduct}$  $= \frac{0.375 \cdot 12^2}{6} - 2.8125$  $= 6.1875 in^3$  $(Z_{x,net} = 9 \ in^3) \le (1.5 \cdot S_{x,net} = 1.5 \cdot 6.1875 = 9.28125 \ in^3)$ Net moment capacity,  $\frac{M_{n,net}}{\Omega} = \frac{N \cdot \frac{F_b}{\Omega} \cdot Z_{x,net}}{12}$  $= \frac{1 \cdot 32.5 \cdot 9}{12}$ = 24.375 *kip* · *ft*, Reference: (9-8) Shear capacity =  $\left(\frac{\min\left(\frac{M_{n,gross}}{\Omega},\frac{M_{n,net}}{\Omega}\right)}{e_x}\right) \cdot 12$  $= \left(\frac{\min(33.6826, 24.375)}{2.5}\right) \cdot 12$ = 117 kips



#### Flexure of web plate(s) (19). Reference F11 (continued)

Applied member shear,  $V_a = 40 kips$ 

 $Unity = \frac{V_a}{Shear \ capacity}$  $=\frac{40}{117}$ = 0.34188117.0 kips  $\geq$  40 kips (OK)  $0.342 \le 1$  (OK)

#### Shear yielding of beam web (2). Reference G2.1

This beam depth, d = 23.6 in This beam web thickness,  $t_w = 0.395$  in This beam yield stress,  $F_v = 50 \ ksi$ Other beam depth,  $d_s = 23.7$  in Other beam web thickness,  $t_{ws} = 0.415$  in Other beam yield stress,  $F_{y,s} = 50 \ ksi$ 

#### <u>This beam</u>

Applied member shear,  $V_a = 40$  kips  $\Omega = 1.5$ Allowable shear stress,  $\frac{F_v}{Q} = \frac{0.6 \cdot F_y}{Q}$  $= \frac{0.6 \cdot 50}{1.5}$  $= 20 \ ksi$ Web shear area,  $A_w = d \cdot t_w$  $= 23.6 \cdot 0.395$  $= 9.322 in^2$  $Unity = \frac{V_a}{\frac{F_v}{\Omega} \cdot A_w}$  $= \frac{40}{20 \cdot 9.322} \\= 0.214546$ Shear capacity =  $\frac{F_v}{\Omega} \cdot A_w$  $= 20 \cdot 9.322$  $= 186.44 \ kips$ Beam gross shear,  $\frac{V_g}{\Omega} = Shear \ capacity$ = 186.4 kipsThis beam unity ratio, U = Unity= 0.214546





Project:ASD16ValidationExamplesFabricator:ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

#### <u>Other beam</u>

Applied member shear,  $V_a = 40 \ kips$  $\Omega = 1.5$ Allowable shear stress,  $\frac{F_v}{\Omega} = \frac{0.6 \cdot F_{y,s}}{\Omega}$  $= \frac{0.6 \cdot 50}{1.5}$  $= 20 \ ksi$ Web shear area,  $A_w = d_s \cdot t_{ws}$  $= 23.7 \cdot 0.415$  $= 9.8355 in^2$  $Unity = \frac{V_a}{\frac{F_v}{\Omega} \cdot A_w}$  $=\frac{40}{20 \cdot 9.8355} \\= 0.203345$ Shear capacity =  $\frac{F_v}{\Omega} \cdot A_w$  $= 20 \cdot 9.8355$  $= 196.71 \ kips$ Other beam gross shear,  $\frac{V_{g,s}}{\Omega} = Shear \ capacity$ = 196.7 kipsOther beam unity ratio,  $U_o = Unity$ = 0.203345Unity = max  $(U, U_o)$ = max (0.214546, 0.203345)= 0.214546Shear capacity = min  $\left(\frac{V_g}{\Omega}, \frac{V_{gs}}{\Omega}\right)$ = min (186.4, 196.7)= 186.4 kips186.4 kips  $\geq$  40 kips (OK)



 $0.215 \le 1$  (OK)

# **Results summary**

# Beam Splice Plates on right end of Beam B\_8 [7]

Limit state summary

|                                      | Calc. Num. | Unity ratio | Rn/OMEGA   | AISC Ref   |
|--------------------------------------|------------|-------------|------------|------------|
| Bolt bearing on web plate(s):        | 20         | 0.815       | 49.1 kips  | J3.11      |
| Bolt bearing on beam web:            | 20         | 0.800       | 50.0 kips  | J3.11      |
| Bolt shear of web bolts:             | 3          | 0.800       | 50.0 kips  | J3.7, J3.9 |
| Shear rupture of web plate(s):       | 21         | 0.684       | 58.5 kips  | J4.2       |
| Block shear rupture of web plate(s): | 6          | 0.631       | 63.4 kips  | J4.3       |
| Shear yielding of web plate(s):      | 15         | 0.444       | 90.0 kips  | J4.2       |
| Flexure of web plate(s):             | 19         | 0.342       | 117.0 kips | F11        |
| Shear yielding of beam web:          | 2          | 0.215       | 186.4 kips | G2.1       |

### **Connection strength**

|        | Value:    | Unity ratio: |
|--------|-----------|--------------|
| Shear: | 49.1 kips | 0.815        |

### Notes and conclusions

- Splice design is based on the smaller beam load and moment.
- The effect of eccentricity is included in the web connection design:
  - La = 2.5 in (0.5 \* dist. between C.G.'s of bolt groups).
- CONNECTION IS OK
  - Strength equals or exceeds design loads.

## Beam Splice Plates on left end of Beam B\_7 [8]

### Limit state summary

|                               | Calc. Num. | Unity ratio | Rn/OMEGA  | AISC Ref   |
|-------------------------------|------------|-------------|-----------|------------|
| Bolt bearing on web plate(s): | 20         | 0.815       | 49.1 kips | J3.11      |
| Bolt bearing on beam web:     | 20         | 0.800       | 50.0 kips | J3.11      |
| Bolt shear of web bolts:      | 3          | 0.800       | 50.0 kips | J3.7, J3.9 |



 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

**Report:** Connection Cube Report for Ex. II.A-20

#### Limit state summary (continued)

| Shear rupture of web plate(s):       | 21 | 0.684 | 58.5 kips  | J4.2 |
|--------------------------------------|----|-------|------------|------|
| Block shear rupture of web plate(s): | 6  | 0.631 | 63.4 kips  | J4.3 |
| Shear yielding of web plate(s):      | 15 | 0.444 | 90.0 kips  | J4.2 |
| Flexure of web plate(s):             | 19 | 0.342 | 117.0 kips | F11  |
| Shear yielding of beam web:          | 2  | 0.215 | 186.4 kips | G2.1 |

### **Connection strength**

|        | Value:    | Unity ratio: |
|--------|-----------|--------------|
| Shear: | 49.1 kips | 0.815        |

### Notes and conclusions

- Splice design is based on the smaller beam load and moment.
- The effect of eccentricity is included in the web connection design:
  - La = 2.5 in (0.5 \* dist. between C.G.'s of bolt groups).
- CONNECTION IS OK
  - Strength equals or exceeds design loads.



