

SDS2 Steel Connection Design: Connection Cube Report

Cube: Ex. II.B-1 Revision: 0 Project: ASD16ValidationExamples Engineer: Fabricator: ASD16ValidationExamples

Generated by SDS2 x 2025.02 on Tuesday, Oct 1, 2024

Ex. II.B-1 [5] at X=175-0, Y=100-0 Elev=-9

ELEVATION VIEW

Beam B_11 [11]

Design method

- AISC Steel Construction Manual, Sixteenth Edition (ASD)
- AISC 360-22

Overview

Section size:	W18x50
Sequence:	1
ABM:	N/Assign
Plan length:	25-0
Camber:	0.00 in
Span length:	25-0
Slope:	0.00 °
Material length:	24-4 7/16
Plan rotation:	0.00 °

Section properties

Material grade:	A992	
Yield stress, <i>F_y</i> :	50 ksi	
Tensile strength, F_u :	65 ksi	
Depth, <i>d</i> :	18 in	
Web thickness, <i>t_w</i> :	0.355 in	
Flange width, <i>b_j</i> :	7.5 in	
Flange thickness, <i>tj</i> .	0.57 in	
Design k distance, <i>k_{des}</i> :	0.972 in	
Detail k distance, <i>k_{det}</i> :	1.25 in	
Distance between web toes of fillets, <i>T</i> :	15.5 in	
Moment of inertia about the major axis, <i>I</i> _x :	800 in ⁴	
Plastic section modulus about the major axis, Z_x :	101 in ³	

Design summary

Left end

Connection:	Shear tab		
	Plate, Size as required		
	No Stiffener Opposite		
	Shear plate on NS, Skew holes in beam		
	Combine shear plates: No		
	One bolt column		
	Bevel shear tab: Automatic		
	Attach to: Supporting		
	Plates on left end, Minimum Setup: No		
	Bolted moment, Plate		
	Design for column flange stiffener		
	Design for column web doubler		
Elevation:	0		
Minus Dim:	7.5625 in		
Mtrl Setback:	7.5625 in (AUTO)		
Std Detail:	None		
Web:	Web vertical		
End rotation:	0.00 °		
Shear:	28.0 kips		
Story shear:	0.0 kips		
Moment:	168.0 kip·ft		
Tension:	0.0 kips		
Compress:	0.0 kips		
Tying:	0.0 kips (AUTO)		

B_11 [11] Connection strength check: LEFT END

Member end summary

Connecting nodes

<u>Node 1</u>

Column:	C_10 [10]
Section size:	W14x99
End 0 elevation:	-10-0
End 1 elevation:	10-0
Framing condition:	Flange of Column
Material grade:	A992
Detail k distance, <i>k_{det}</i> :	2.0625 in
Design k distance, <i>k_{des}:</i>	1.38 in
Supporting member	0.78 in
ι_{sup} .	

Design loads

Shear:	28.0 kips
Moment:	168.0 kip·ft

Design load notes

- Non-composite design
- Reaction has been input
- Moment has been input
- Design reaction is 34.7 % of the allowable uniform steel beam load.
- Design moment is 66.7 % of the allowable plastic moment, Mp/OMEGA.

Connection summary

• SHEAR PLATE WEB CONN. WITH FLANGE PLATE MOMENT CONN.

Connection details

Web plate:	Grade:	A572-50
	Tensile strength, F_u :	65 ksi
	Yield stress, F_y :	50 ksi
	Thickness, <i>t</i> :	0.375 in
	Depth, <i>d</i> :	9 in
Weld:	Weld leg size, <i>w</i> :	0.25 in
Web bolts:	Bolt type:	A325N
	Hole type in connection:	Standard round
	Bolt diameter, <i>d_b</i> :	7/8
	Bolt rows, <i>n</i> :	3
	Bolt row spacing, s:	3 in
	Bolt columns, <i>m</i> :	1
Flange plates:	Grade:	A572-50
	Tensile strength, F_u :	65 ksi
	Yield stress, F_y :	50 ksi
	Thickness, <i>t</i> :	0.75 in
	Width, <i>b</i> :	7 in
Flange bolts:	Bolt type:	A325N
	Hole type in connection:	Standard round
	Bolt diameter, <i>d_b</i> :	7/8
	Bolt rows, <i>n</i> :	4
	Bolt row spacing, s:	3 in
	Bolt gage, g:	4 in
Flange connection welds:	Weld type:	Double fillet
	Weld leg size, <i>w</i> :	0.375 in
Connection geometry:	Dihedral angle, <i>θ</i> :	90.00 °

Connection notes

• Flange connection Fy does not match beam flange Fy.

Project:ASD16ValidationExamplesFabricator:ASD16ValidationExamplesReport:Connection Cube Report for Ex. II.B-1

Connection design lock summary

Locked Via Member Edit: 39

Expanded design calculation

Strength of column flange (83). Reference J10

Beam section depth, d = 18 in Column flange thickness, $t_{f,s} = 0.78$ in Column k distance, $k_s = 1.38$ in Flange plate thickness, $t_{fp} = 0.75$ in Column web thickness, $t_{w,s} = 0.485$ in Column flange yield stress, $F_{yf,s} = 50$ ksi Column web yield stress, $F_{yw,s} = 50$ ksi

$$=\frac{\left(\left(\frac{|168|}{(18+0.75)}\right)\cdot 12+\max(0,0)\right)}{(123.675+0)}$$

= 0.869375

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.B-1

Strength of column flange (83). Reference J10 (continued)

Unity ratio for flange bending, $U_{bend} = \frac{\left(\left|\frac{|M_d|}{(d+t_{fp})}\right| \cdot 12 + T_{a,f,h}\right)}{\left(\frac{P_{f,bend}}{\Omega} + P_{y,st}\right)}$ $=\frac{\left(\left(\frac{|168|}{(18+0.75)}\right)\cdot 12+0\right)}{(113\,847+0)}$ = 0.944423 $Unity = max (U_{vield}, U_{bend})$ = max (0.869375, 0.944423)= 0.944423Remaining column capacity, $P_{f,all} = min \left(\frac{P_{f,yield}}{\Omega} - max \left(T_{a,f,h} C_{a,f,h} \right) \frac{P_{f,bend}}{\Omega} - T_{a,f,h} \right)$ = min (123.675 - max (0,0) - 0)= 113.847 kipsMoment capacity = $\frac{P_{f,all} \cdot (d + t_{fp})}{12}$ $= \frac{113.847 \cdot (18 + 0.75)}{12}$ = 177.886 kip \cdot ft $177.9 \ kip \cdot ft \ge (|168| = 168 \ kip \cdot ft)$ **(OK)** $0.944 \le 1$ (OK) Rupture of flange plate to support weld (212). Reference J2, Table J2.5 Flange plate tensile strength, $F_{u,pl} = 65 \ ksi$ Flange plate width, $W_{pl} = 7$ in Flange plate thickness, $t_{pl} = 0.75$ in Full section depth, d = 18 in Weld leg size, w = 0.375 in Applied member moment, $M_a = 168 \ kip \cdot ft$ Weld adjustment for angle of loading, factor = $1 + 0.5 \cdot sin (90)^{1.5}$ = 1.5 $\Omega = 2$ $F_{EXX} = 70 \ ksi$ Allowable weld stress, $\frac{F_w}{\Omega} = \frac{0.6 \cdot F_{EXX} \cdot factor}{\Omega}$ $= \frac{0.6 \cdot 70 \cdot 1.5}{2}$ $= 31.5 \ ksi$

 $\Omega = 2$ $F_{EXX} = 70 \ ksi$ $\Omega = 2$ Maximum effective weld size, $w_{e,max} = \frac{\left(\frac{0.6 \cdot F_{u,pl} \cdot l_{pl}}{\Omega}\right)}{\left(\frac{2 \cdot 0.707 \cdot 0.6 \cdot F_{EXX}}{\Omega}\right)}$ $=\frac{\left(\frac{0.6\cdot65\cdot0.75}{2}\right)}{\left(\frac{2\cdot0.707\cdot0.6\cdot70}{2}\right)}$ = 0.492524 in Effective weld size, $w_e = w$ = 0.375 in Calculate total effective transverse weld throat Total effective transverse weld throat, $t_{eff} = 0.707 \cdot (w_e + w_e)$ $= 0.707 \cdot (0.375 + 0.375)$ = 0.53025 in Flange connection capacity, $\frac{R_f}{\Omega} = \frac{F_w}{\Omega} \cdot t_{eff} \cdot W_{pl}$ $= 31.5 \cdot 0.53025 \cdot 7$ = 116.92 kipsApplied member moment, $M_a = 168 \ kip \cdot ft$ $Unity = \left(\frac{\left(\frac{|M_{d}|}{(d+t_{pl})}\right)}{\frac{R_{f}}{\Omega}}\right) \cdot 12$ $= \left(\frac{\left(\frac{|168|}{(18+0.75)}\right)}{116.92} \right) + 12$ = 0.919602Flange tension load, horizontal component, $T_{a,f,h} = 0$ kips |R|

Moment capacity =
$$\frac{\left(\frac{19}{\Omega} - T_{a,f,h}\right) \cdot \left(d + t_{pl}\right)}{12}$$

 $= \frac{(116.92 - 0) \cdot (18 + 0.75)}{12}$ = 182.688 kip \cdot ft

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.B-1

 $182.7 \ kip \cdot ft \ge (|168| = 168 \ kip \cdot ft) \quad (OK)$ $0.920 \le 1 \quad (OK)$

Tension/compression of flange plate (46). Reference D,E3,J4

Unsupported flange plate length, $L_b = 2$ in Connection tensile strength, $F_u = 65 \ ksi$ Plate yield stress, $F_{v,pl} = 50 \ ksi$ Plate thickness, $t_{pl} = 0.75$ in Plate width, $w_p = 7$ in Beam depth, d = 18 in Flange tension load, horizontal component, $T_{a,fh} = 0$ kips Flange compression load, horizontal component, $C_{afh} = 0$ kips Gross area, $A_g = w_p \cdot t_{pl}$ $= 7 \cdot 0.75$ $= 5.25 in^2$ Hole diameter, $d_h = 1$ in Net area, $A_n = t_{pl} \cdot (w_p - 2 \cdot d_h)$ $= 0.75 \cdot (7 - 2 \cdot 1)$ $= 3.75 in^2$ $\Omega = 2$ $\Omega = 1.67$ Remaining tension capacity in plate, $\frac{T}{\Omega} = min\left(\frac{F_{y,pl} \cdot A_g}{\Omega}, \frac{F_u \cdot A_n}{\Omega}\right) - T_{a,f,h}$ $= \min\left(\frac{50 \cdot 5.25}{1.67}, \frac{65 \cdot 3.75}{2}\right) - 0$ = 121.875 kipsEffective length factor, K = 0.65Unsupported length, $L = max (2, L_b)$ = max (2,2)= 2 inRadius of gyration, $r = \frac{l_{pl}}{\sqrt{12}}$ $= \frac{0.75}{\sqrt{12}} = 0.216506 \ in$ Slenderness ratio, $Kl/r = \frac{K \cdot L}{r}$ $=\frac{0.65\cdot 2}{0.216506}$ = 6.00444Nominal stress, $F_n = F_{v,pl}$

Tension/compression of flange plate (46). Reference D,E3,J4 (continued)

 $= 50 \ ksi$ $\Omega = 1.67$

Remaining compression capacity in plate, $\frac{C}{\Omega} = \frac{F_n \cdot A_g}{\Omega} - C_{a,f,h}$ $= \frac{50 \cdot 5.25}{1.67} - 0$ $= 157.186 \ kips$ $Moment \ capacity = \frac{\min\left(\frac{T}{\Omega}, \frac{C}{\Omega}\right) \cdot \left(d + t_{pl}\right)}{12}$ $= \frac{\min\left(121.875, 157.186\right) \cdot (18 + 0.75)}{12}$ $= 190.43 \ kip \cdot ft$ Applied member moment, $M_a = 168 \ kip \cdot ft$ $Unity = \frac{|M_d|}{Moment \ capacity}$ $= \frac{|168|}{190.433}$ = 0.882198 $190.4 \ kip \cdot ft \ge (|168| = 168 \ kip \cdot ft) \quad (OK)$ $0.882 \le 1 \quad (OK)$

Panel zone shear of column web (395). Reference J10.6

Story shear, $V_s = 0$ kips Beam depth, $d_b = 18$ in Flange connection thickness, t = 0.75 in Column yield stress, $F_{v,c} = 50 \ ksi$ Column web thickness, $t_{wc} = 0.485$ in Column depth, $d_c = 14.2$ in Equivalent web thickness, $t_{w,eq} = t_{w,c}$ = 0.485 inWeb panel zone area, $A_w = d_c \cdot t_{w,eq}$ $= 14.2 \cdot 0.485$ $= 6.887 in^2$ $\Omega = 1.67$ Allowable shear stress, $\frac{F_{\nu}}{\Omega} = \frac{0.6 \cdot F_{y,c}}{\Omega}$ $= \frac{0.6 \cdot 50}{1.67} \\= 17.9641 \ ksi$ Web panel zone capacity, $R_v = \frac{F_v}{Q} \cdot A_w$ $= 17.9641 \cdot 6.887$

Panel zone shear of column web (395). Reference J10.6 (continued)

= 123.719 kips Allowable flange force, $F_f = R_v - V_s$ = 123.719 - 0 = 123.719 kips Panel moment capacity = $\frac{F_f \cdot (d_b + t)}{12}$ = $\frac{123.719 \cdot (18 + 0.75)}{12}$ = 193.31 kip \cdot ft Applied panel moment, $M_{a,z,p} = 168$ kip \cdot ft Unity = $\frac{|M_{a,z,p}|}{Panel moment capacity}$ = $\frac{|168|}{193.308}$ = 0.869078 193.3 kip \cdot ft \geq (|168| = 168 kip \cdot ft) (OK) 0.869 \leq 1 (OK)

Bolt bearing on flange plate (69). Reference J3.11

Moment arm, $L_m = 18$ in Row edge distance, $L_e = 1.5$ in Bolt row spacing, s = 3 in Number of shear planes, $N_s = 1$ Plate tensile strength, $F_{u,p} = 65 \ ksi$ Flange plate thickness, $t_p = 0.75$ in Bolt diameter, $d_b = 0.875$ in Bolt columns, m = 2Bolt rows, n = 4Total length of bolt group, $s_{total} = 9$ in Length of joint, $L = s_{total}$ = 9 in $(L=9 in) \leq 38 in$ No reduction for connection length. Bolt pattern length reduction factor, $k_r = 1$ Bolt area, $A_b = 0.60132 in^2$ Allowable shear stress, $F_{nv} = 54 \ ksi$ $\Omega = 2$ Bolt shear capacity, $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s \cdot k_r}{\Omega}$ $= \frac{54 \cdot 0.60132 \cdot 1 \cdot 1}{2}$

Bolt bearing on flange plate (69). Reference J3.11 (continued)

= 16.2357 kipsHole diameter, $d_h = 0.9375$ in $\Omega = 2$ Bolt bearing capacity, $\frac{R_{n,b}}{Q} = \frac{2.4 \cdot d_b \cdot t_p \cdot F_{u,p}}{Q}$ $= \frac{2.4 \cdot 0.875 \cdot 0.75 \cdot 65}{2}$ = 51.1875 kips **Interior bolt capacity** Bolt row spacing, s = 3 in Clear distance from bolt hole to bolt hole, $L_{c,int} = s - d_h$ = 3 - 0.9375= 2.0625 in $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t_p \cdot F_{u,p}}{\Omega}$ $= \frac{1.2 \cdot 2.0625 \cdot 0.75 \cdot 65}{1.2 \cdot 2.0625 \cdot 0.75 \cdot 65}$ = 60.3281 kipsControlling bearing/tearout strength of interior bolt, $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (60.3281, 51.1875, 16.2357) $= 16.2357 \ kips$ **Edge bolt capacity** Clear distance from hole to edge of material, $L_{c.edge} = L_e - 0.5 \cdot d_h$ $= 1.5 - 0.5 \cdot 0.9375$ = 1.03125 in $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,edge} \cdot t_p \cdot F_{u,p}}{\Omega}$ $=\frac{1.2\cdot 1.03125\cdot 0.75\cdot 65}{2}$ $= 30.1641 \, kips$ Controlling bearing/tearout strength of exterior bolt, $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (30.1641, 51.1875, 16.2357)= 16.2357 kipsNumber of edge bolts, $N_e = m$ = 2Number of interior bolts, $N_i = m \cdot n - N_e$

Bolt bearing on flange plate (69). Reference J3.11 (continued)

 $= 2 \cdot 4 - 2$ = 6

Bolt bearing capacity of flange plate, $\frac{F_{f,allow}}{\Omega} = \frac{R_{n,e}}{\Omega} \cdot N_e + \frac{R_{n,i}}{\Omega} \cdot N_i$

 $= 16.2357 \cdot 2 + 16.2357 \cdot 6$

= 129.885 kips

Force on flange due to axial load, $P_{a,f} = 0$ kips

Moment capacity = $\frac{\left(\frac{F_{f,allow}}{\Omega} - P_{a,f}\right) \cdot L_m}{12}$

 $= \frac{(129.885 - 0) \cdot 18}{12}$ = 194.828 kip \cdot ft Applied member moment, $M_a = 168 \text{ kip} \cdot ft$ $Unity = \frac{|M_d|}{Moment \ capacity}$ = $\frac{|168|}{194.825}$ = 0.862312 194.8 kip \cdot ft \ge (|168| = 168 kip \cdot ft) (OK)

 $0.862 \le 1$ (OK)

Bolt bearing on beam flange (69). Reference J3.11

Moment arm, $L_m = 18$ in End distance, $L_e = 1.5375$ in Bolt row spacing, s = 3 in Number of shear planes, $N_s = 1$ Beam tensile strength, $F_{ub} = 65 \ ksi$ Flange thickness, $t_f = 0.57$ in Bolt diameter, $d_b = 0.875$ in Bolt columns, m = 2Bolt rows, n = 4Total length of bolt group, $s_{total} = 9$ in Length of joint, $L = s_{total}$ = 9 in $(L = 9 in) \le 38 in$ No reduction for connection length. Bolt pattern length reduction factor, $k_r = 1$ Bolt area, $A_b = 0.60132 in^2$ Allowable shear stress, $F_{nv} = 54 \ ksi$

Page 16

Bolt bearing on beam flange (69). Reference J3.11 (continued)

 $\Omega = 2$ Bolt shear capacity, $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s \cdot k_r}{\Omega}$ $= \underline{54 \cdot 0.60132 \cdot 1 \cdot 1}$ $= 16.2357 \ \bar{k}ips$ Hole diameter, $d_h = 0.9375$ in $\Omega = 2$ Bolt bearing capacity, $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t_f \cdot F_{u,b}}{\Omega}$ $= \frac{2.4 \cdot 0.875 \cdot 0.57 \cdot 65}{2}$ = 38.9025 kips **Interior bolt capacity** Bolt row spacing, s = 3 in Clear distance from bolt hole to bolt hole, $L_{c.int} = s - d_h$ = 3 - 0.9375= 2.0625 in $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t_f \cdot F_{u,b}}{\Omega}$ $= \frac{1.2 \cdot 2.0625 \cdot 0.57 \cdot 65}{2}$ = 45.8494 kips Controlling bearing/tearout strength of interior bolt, $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (45.8494.38.9025.16.2357)= 16.2357 kips**Edge bolt capacity** Clear distance from hole to edge of material, $L_{c.edge} = L_e - 0.5 \cdot d_h$ $= 1.5375 - 0.5 \cdot 0.9375$ = 1.06875 in $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,edge} \cdot t_f \cdot F_{u,b}}{\Omega}$ $= \frac{1.2 \cdot 1.06875 \cdot 0.57 \cdot 65}{2}$ = 23.7583 kips Controlling bearing/tearout strength of exterior bolt, $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (23.7583, 38.9025, 16.2357)

Edge bolt capacity (continued)= 16.2357 kipsNumber of edge bolts, $N_e = m$ = 2Number of interior bolts, $N_i = m \cdot n - N_e$

= 6 Bolt bearing capacity of flange plate, $\frac{F_{f,allow}}{\Omega} = \frac{R_{n,e}}{\Omega} \cdot N_e + \frac{R_{n,i}}{\Omega} \cdot N_i$

 $= 16.2357 \cdot 2 + 16.2357 \cdot 6$

 $= 129.885 \ kips$

 $= 2 \cdot 4 - 2$

Force on flange due to axial load, $P_{a,f} = 0$ kips

Moment capacity = $\frac{\left(\frac{F_{f,allow}}{\Omega} - P_{a,f}\right) \cdot L_m}{12}$

 $= \frac{(129.885 - 0) \cdot 18}{12}$ = 194.828 kip \cdot ft Applied member moment, $M_a = 168 \text{ kip} \cdot ft$ $Unity = \frac{|M_a|}{Moment \ capacity}$ = $\frac{|168|}{194.825}$ = 0.862312 194.8 kip \cdot ft \ge (|168| = 168 kip \cdot ft) (OK)

$$0.862 \le 1$$
 (OK)

Bolt shear of flange bolts (68). Reference J, Table J3.2

Smaller section depth, d = 18 in Number of shear planes, $N_s = 1$ Bolt row spacing, s = 3 in Bolt columns, m = 2Bolt rows, n = 4Force on flange due to axial load, $P_{a,f} = 0$ kips Applied member moment, $M_a = 168$ kip \cdot ft Total length of bolt group, $s_{total} = 9$ in Joint length, $l_j = s_{total}$ = 9 in $(l_j = 9$ in) ≤ 38 in No reduction for connection length. Bolt pattern length reduction factor, $k_r = 1$

Bolt shear of flange bolts (68). Reference J,Table J3.2 (continued)

Bolt area, $A_b = 0.60132 in^2$ Allowable shear stress, $F_{nv} = 54 ksi$ $\Omega = 2$

Bolt shear capacity,
$$\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s \cdot k_r}{\Omega}$$
$$= \frac{54 \cdot 0.60132 \cdot 1 \cdot 1}{2}$$
$$= 16.2357 \ kips$$
$$Unity = \left(\frac{\left(\frac{|M_d|}{d}\right)}{\frac{R_{n,v}}{\Omega} \cdot n \cdot m}\right) \cdot 12$$
$$= \left(\frac{\left(\frac{|168|}{18}\right)}{16.2357 \cdot 4 \cdot 2}\right) \cdot 12$$
$$= 0.8623$$

Moment capacity = $\frac{\frac{R_{n,v}}{\Omega} \cdot n \cdot m \cdot d}{12}$

 $= \frac{16.2357 \cdot 4 \cdot 2 \cdot 18}{12}$ = 194.828 kip \cdot ft 194.8 kip \cdot ft \ge (|168| = 168 kip \cdot ft) (OK) 0.862 \le 1 (OK)

Flexural rupture of beam (211). Reference F

Flange bolt columns, $m_f = 2$ Flange thickness, $t_f = 0.57$ in Flange width, $b_f = 7.5$ in Tensile strength, $F_u = 65$ ksi Elastic section modulus about the major axis, $S_x = 88.9$ in³ Applied member moment, $M_a = 168$ kip \cdot ft Applied tension load, horizontal component, $T_{a,h} = 0$ kips Applied compression load, horizontal component, $C_{a,h} = 0$ kips Steel modulus of elasticity, E = 29000 ksi Hole diameter flange, $d_{h,f} = 1$ in Hole diameter web, $d_{h,w} = 1$ in

Calculate the strong axis moment capacity

Gross flange area, $A_{fg} = b_f \cdot t_f$ = 7.5 \cdot 0.57 = 4.275 *in*²

Calculate the strong axis moment capacity (continued) Net flange area, $A_{fn} = (b_f - m_f \cdot d_{h,f}) \cdot t_f$ $= (7.5 - 2 \cdot 1) \cdot 0.57$ $= 3.135 in^2$ Hole reduction coefficient, $Y_t = 1$ Nominal moment capacity, $M_n = \frac{\left(\frac{F_u \cdot A_{fn} \cdot S_x}{A_{fg}}\right)}{12}$ $\frac{\underline{65\cdot 3.135\cdot 88.9}}{4.275}\Big)$ $= 353.131 \ kip \cdot ft$ $\Omega = 1.67$ Allowable moment, $\frac{M}{\Omega} = \frac{M_n}{\Omega}$ $= \frac{353.131}{1.67} = 211.455 \, kip \cdot ft$ Unity = $\frac{|M_d|}{\frac{M}{\Omega}}$ $=\frac{|168|}{211.455}$ = 0.794494Moment capacity = $\frac{M}{\Omega}$ $= 211.455 \, kip \cdot ft$ $211.5 \ kip \cdot ft \ge (|168| = 168 \ kip \cdot ft)$ **(OK)**

$$0.794 \le 1$$
 (OK)

Crippling of column web (25). Reference J10.3

Flange plate thickness, $t_{fp} = 0.75$ in Beam section depth, $d_b = 18$ in Column flange thickness, $t_{f,s} = 0.78$ in Column section depth, $d_s = 14.2$ in Column web thickness, $t_{WS} = 0.485$ in Column yield stress, $F_{y,s} = 50$ ksi Applied compression load, horizontal component, $C_{a,h} = 0$ kips Bearing length, $l_b = t_{fp}$ = 0.75 in Modulus of Elasticity, E = 29000 ksi Chord-stress interaction parameter, $Q_f = 1$

Crippling of column web (25). Reference J10.3 (continued)

Nominal web crippling strength, $R_n = 0.8 \cdot t_{w,s}^2 \cdot \left(1 + 3 \cdot \left(\frac{l_b}{d_s}\right) \cdot \left(\frac{t_{w,s}}{t_{f,s}}\right)^{1.5}\right) \cdot \sqrt{\left(\frac{E \cdot F_{y,s} \cdot t_{f,s}}{t_{w,s}}\right)^{1}} \cdot Q_f$ $= 0.8 \cdot 0.485^2 \cdot \left(1 + 3 \cdot \left(\frac{0.75}{14.2}\right) \cdot \left(\frac{0.485}{0.78}\right)^{1.5}\right) \cdot \sqrt{\left(\frac{29000 \cdot 50 \cdot 0.78}{0.485}\right)} \cdot 1$ = 309.69 kips $\Omega = 2$ Allowable flange force, $F_f = \frac{R_n}{Q}$ $= \frac{309.69}{2} \\= 154.845 \ kips$ Moment capacity = $\frac{F_f \cdot (d_b + t_{fp})}{12}$ $=\frac{154.845\cdot(18+0.75)}{12}$ $= 241.946 \ kip \cdot ft$ Applied member moment, $M_a = 168 \ kip \cdot ft$ M_a $Unity = \frac{1}{Moment\ capacity}$ $=\frac{|168|}{241.942}$ = 0.694382 $241.9 \ kip \cdot ft \ge (|168| = 168 \ kip \cdot ft)$ (OK) $0.694 \le 1$ (OK) Shear rupture of plate (21). Reference [4.2 Connection tensile strength, $F_u = 65 \ ksi$ Bolt rows, n = 3Connection thickness, $t_{conn} = 0.375$ in Connection depth, $d_{pl} = 9$ in Hole diameter, $d_h = 1$ in Net shear area, $A_{nv} = t_{conn} \cdot (d_{pl} - n \cdot d_h)$ $= 0.375 \cdot (9 - 3 \cdot 1)$ $= 2.25 in^2$ $\Omega = 2$

Shear capacity, $\frac{V_n}{\Omega} = \frac{0.6 \cdot F_u \cdot A_{nv}}{\Omega}$ = $\frac{0.6 \cdot 65 \cdot 2.25}{2}$ = 43.875 kips Shear capacity = $\frac{V_n}{\Omega}$ = 43.875 kips

Page 21

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.B-1

Shear rupture of plate (21). Reference J4.2 (continued)

Applied member shear, $V_a = 28 kips$

 $Unity = \frac{V_a}{Shear\ capacity}$ $= \frac{28}{43.9}$ = 0.637813 $43.9\ kips \ge 28\ kips \quad (OK)$ $0.638 \le 1 \quad (OK)$

Bolt bearing on plate (110). Reference J3.11

Tensile strength, $F_u = 65 \ ksi$ Plate thickness, $t_{nl} = 0.375$ in Bolt row spacing, s = 3 in Row edge distance, $L_{ev} = 1.5$ in Bolt diameter, $d_b = 0.875$ in Number of shear planes, $N_s = 1$ Bolt columns, m = 1Bolt rows, n = 3Total length of bolt group, $s_{total} = 6$ in Length of joint, $L = s_{total}$ = 6 inBolt area, $A_b = 0.60132 in^2$ Allowable shear stress, $F_{nv} = 54 \ ksi$ $\Omega = 2$ Bolt shear capacity, $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$ $= \frac{54 \cdot 0.60132 \cdot 1}{2}$ = 16.2357 kips Hole diameter, $d_h = 0.9375$ in $\Omega = 2$ Bolt bearing capacity, $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t_{pl} \cdot F_u}{\Omega}$ $=\frac{2.4\cdot 0.875\cdot 0.375\cdot 65}{2}$ = 25.5938 kipsInterior bolt capacity Bolt row spacing, s = 3 in Clear distance from bolt hole to bolt hole, $L_{c,int} = s - d_h$ = 3 - 0.9375

= 2.0625 in

Fabricator:ASD16ValidationExamplesReport:Connection Cube Report for Ex. II.B-1

· · ·

Interior bolt capacity (continued) $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t_{pl} \cdot F_u}{\Omega}$ $= \frac{1.2 \cdot 2.0625 \cdot 0.375 \cdot 65}{2}$ $= 30.1641 \ kips$ Controlling bearing/tearout strength of interior bolt, $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (30.1641, 25.5938, 16.2357)= 16.2357 kips**Edge bolt capacity** Clear distance from hole to edge of material, $L_{c.edge} = L_{ev} - 0.5 \cdot d_h$ $= 1.5 - 0.5 \cdot 0.9375$ = 1.03125 in $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,edge} \cdot t_{pl} \cdot F_u}{\Omega}$ $= \frac{1.2 \cdot 1.03125 \cdot 0.375 \cdot 65}{2}$ = 15.082 kips Controlling bearing/tearout strength of exterior bolt, $\frac{R_{n,e}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (15.082, 25.5938, 16.2357) $= 15.082 \ kips$ Number of edge bolts, $N_e = m$ = 1 Number of interior bolts, $N_i = m \cdot n - N_e$ $= 1 \cdot 3 - 1$ = 2Shear capacity = $\frac{R_{n,e}}{\Omega} \cdot N_e + \frac{R_{n,i}}{\Omega} \cdot N_i$ $= 15.082 \cdot 1 + 16.2357 \cdot 2$ $= 47.5533 \ kips$ Applied member shear, $V_a = 28 kips$ $Unity = \frac{V_a}{Shear \ capacity}$ $=\frac{28}{47.6}$ = 0.588235 $47.6 \ kips \ge 28 \ kips$ (OK) $0.588 \le 1$ (OK)

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.B-1

Bolt shear of web bolts (1). Reference J3.7, J3.9

Number of shear planes, $N_s = 1$ Bolt columns, m = 1Bolt rows, n = 3Bolt area, $A_b = 0.60132 in^2$ Allowable shear stress, $F_{nv} = 54 \ ksi$ $\Omega = 2$ Bolt shear capacity, $\frac{R_{n,v}}{Q} = \frac{F_{nv} \cdot A_b \cdot N_s}{Q}$ $= \frac{54 \cdot 0.60132 \cdot 1}{2}$ = 16.2357 kips Shear capacity = $\frac{R_{n,v}}{\Omega} \cdot n \cdot m$ $= 16.2357 \cdot 3 \cdot 1$ $= 48.707 \ kips$ Applied member shear, $V_a = 28 kips$ $Unity = \frac{V_a}{Shear \ capacity}$ $=\frac{28}{48.7}$ = 0.57494948.7 kips \geq 28 kips (OK) $0.575 \le 1$ (OK)

Bolt bearing on beam web (110). Reference J3.11

Tensile strength, $F_u = 65 \ ksi$ Plate thickness, $t_{pl} = 0.355 \ in$ Bolt row spacing, $s = 3 \ in$ Bolt diameter, $d_b = 0.875 \ in$ Number of shear planes, $N_s = 1$ Bolt columns, m = 1Bolt rows, n = 3Total length of bolt group, $s_{total} = 6 \ in$ Length of joint, $L = s_{total}$ $= 6 \ in$ Bolt area, $A_b = 0.60132 \ in^2$ Allowable shear stress, $F_{nv} = 54 \ ksi$ $\Omega = 2$ Bolt shear capacity, $\frac{R_{n,v}}{\Omega} = \frac{F_{nv} \cdot A_b \cdot N_s}{\Omega}$ $= \frac{54 \cdot 0.60132 \cdot 1}{2}$

= 16.2357 kipsHole diameter, $d_h = 0.9375$ in $\Omega = 2$ Bolt bearing capacity, $\frac{R_{n,b}}{\Omega} = \frac{2.4 \cdot d_b \cdot t_{pl} \cdot F_u}{\Omega}$ $= \frac{2.4 \cdot 0.875 \cdot 0.355 \cdot 65}{2} = 24.2288 \ kips$ **Interior bolt capacity** Bolt row spacing, s = 3 in Clear distance from bolt hole to bolt hole, $L_{c,int} = s - d_h$ = 3 - 0.9375= 2.0625 in $\Omega = 2$ Tearout load capacity, $\frac{R_{n,to}}{\Omega} = \frac{1.2 \cdot L_{c,int} \cdot t_{pl} \cdot F_u}{\Omega}$ $= \frac{1.2 \cdot 2.0625 \cdot 0.355 \cdot 65}{2}$ = 28.5553 kips Controlling bearing/tearout strength of interior bolt, $\frac{R_{n,i}}{\Omega} = min\left(\frac{R_{n,to}}{\Omega}, \frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (28.5553, 24.2288, 16.2357) $= 16.2357 \ kips$ Edge bolt capacity Tear out will not occur, so the bearing capacity controls. Controlling bearing/tearout strength of exterior bolt, $\frac{R_{n,e}}{\Omega} = \min\left(\frac{R_{n,b}}{\Omega}, \frac{R_{n,v}}{\Omega}\right)$ = min (24.2288, 16.2357)= 16.2357 kipsNumber of edge bolts, $N_e = m$ = 1 Number of interior bolts, $N_i = m \cdot n - N_e$ $= 1 \cdot 3 - 1$ = 2Shear capacity = $\frac{R_{n,e}}{\Omega} \cdot N_e + \frac{R_{n,i}}{\Omega} \cdot N_i$ $= 16.2357 \cdot 1 + 16.2357 \cdot 2$ $= 48.707 \ kips$ Applied member shear, $V_a = 28 kips$

Bolt bearing on beam web (110). Reference J3.11 (continued)

 $Unity = \frac{V_a}{Shear \ capacity}$ $= \frac{28}{48.7}$ = 0.574949 $48.7 \ kips \ge 28 \ kips \quad (OK)$ $0.575 \le 1 \quad (OK)$

Block shear rupture of beam flange (259). Reference J4.3

Full section depth, d = 18 in Bolt row spacing, s = 3 in Edge distance, $L_e = 1.5375$ in Bolt gage, g = 4 in Bolt rows, n = 4Flange thickness, $t_f = 0.57$ in Flange width, $b_f = 7.5$ in Tensile strength, $F_u = 65 \ ksi$ Yield stress, $F_v = 50 \ ksi$ Applied flange tension due to moment, $T_{a,f,M} = 115.663 kips$ Applied tension in flange, $T_{af} = 0$ kips Total length of bolt group, $s_{total} = 9$ in Connection length, $L = s_{total}$ = 9 inHole diameter, $d_h = 1$ in Gross tensile area, $A_{gt} = 2 \cdot 0.5 \cdot |b_f - g| \cdot t_f$ $= 2 \cdot 0.5 \cdot (7.5 - 4) \cdot 0.57$ $= 1.995 in^2$ Net tensile area, $A_{nt} = A_{gt} - 2 \cdot (1 - 0.5) \cdot d_h \cdot t_f$ $= 1.995 - 2 \cdot (1 - 0.5) \cdot 1 \cdot 0.57$ $= 1.425 in^2$ Gross shear area, $A_{gv} = 2 \cdot (L + L_e) \cdot t_f$ $= 2 \cdot (9 + 1.5375) \cdot 0.57$ $= 12.0128 in^{2}$ Net shear area, $A_{nv} = A_{gv} - 2 \cdot (n - 0.5) \cdot d_h \cdot t_f$ $= 12.0128 - 2 \cdot (4 - 0.5) \cdot 1 \cdot 0.57$ $= 8.02275 in^2$ Reduction coefficient, $U_{hs} = 1$ Shear yield load, $R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$ $= 0.6 \cdot 50 \cdot 12.0128$ $= 360.382 \ kips$

Block shear rupture of beam flange (259). Reference J4.3 (continued)

Shear rupture load, $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$ $= 0.6 \cdot 65 \cdot 8.02275$ $= 312.887 \ kips$ Tension load, $R_t = U_{hs} \cdot F_u \cdot A_{nt}$ $= 1 \cdot 65 \cdot 1.425$ $= 92.625 \ kips$ Nominal block shear capacity, $R_n = min (R_{gv}, R_{nv}) + R_t$ = min (360.382, 312.887) + 92.625 $= 405.512 \ kips$ $\Omega = 2$ Flange block shear strength, $\frac{R_{bs}}{Q} = \frac{R_n}{Q}$ $= \frac{405.512}{2} = 202.756 \ kips$ $Unity = \frac{\left(T_{af} + T_{af,M}\right)}{\frac{R_{bs}}{\Omega}}$ $=\frac{(0+115.663)}{202.756}$ = 0.570452Moment capacity = $\frac{\frac{R_{bs}}{\Omega} \cdot (d - t_f)}{12}$ $=\frac{202.756\cdot(18-0.57)}{12}$ $= 294.503 \ kip \cdot ft$ 294.5 $kip \cdot ft \ge (|168| = 168 kip \cdot ft)$ **(OK)** $0.570 \le 1$ (OK)

Block shear rupture of flange plate (85). Reference J4.3

Full section depth, d = 18 in Bolt row spacing, s = 3 in Edge distance, $L_e = 1.5$ in Gage, g = 4 in Bolt rows, n = 4Flange plate thickness, $t_{fp} = 0.75$ in Flange plate width, $b_{conn} = 7$ in Tensile strength, $F_u = 65$ ksi Yield stress, $F_y = 50$ ksi

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.B-1

Block shear rupture of flange plate (85). Reference J4.3 (continued)

Applied tension in flange, $T_{a,f} = 0$ kips

C-shaped failure pattern Total length of bolt group, $s_{total} = 9$ in Connection length, $L = s_{total}$ = 9 inHole diameter, $d_h = 1$ in Gross tensile area, $A_{gt} = 1 \cdot g \cdot t_{fp}$ $= 1 \cdot 4 \cdot 0.75$ $= 3 in^{2}$ Net tensile area, $A_{nt} = A_{gt} - 1 \cdot (2 - 1) \cdot d_h \cdot t_{fn}$ $= 3 - 1 \cdot (2 - 1) \cdot 1 \cdot 0.75$ $= 2.25 in^2$ Gross shear area, $A_{gv} = 1 \cdot 2 \cdot (L + L_e) \cdot t_{fp}$ $= 1 \cdot 2 \cdot (9 + 1.5) \cdot 0.75$ $= 15.75 in^2$ Net shear area, $A_{nv} = A_{gv} - 1 \cdot 2 \cdot (n - 0.5) \cdot d_h \cdot t_{fn}$ $= 15.75 - 1 \cdot 2 \cdot (4 - 0.5) \cdot 1 \cdot 0.75$ $= 10.5 in^2$ Reduction coefficient, $U_{hs} = 1$ Shear yield load, $R_{gv} = 0.6 \cdot F_v \cdot A_{gv}$ $= 0.6 \cdot 50 \cdot 15.75$ = 472.5 kipsShear rupture load, $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$ $= 0.6 \cdot 65 \cdot 10.5$ = 409.5 kipsTension load, $R_t = U_{hs} \cdot F_u \cdot A_{nt}$ $= 1 \cdot 65 \cdot 2.25$ = 146.25 kipsNominal block shear capacity, $R_n = min (R_{gv}, R_{nv}) + R_t$ = min (472.5, 409.5) + 146.25= 555.75 kips $\Omega = 2$ Block shear capacity (C-shaped pattern), $\frac{R_{bs1}}{Q} = \frac{R_n}{Q}$ $=\frac{555.75}{2}$ $= 27\overline{7.875}$ kips

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.B-1

2 L-shaped failure pattern Total length of bolt group, $s_{total} = 9$ in Connection length, $L = s_{total}$ = 9 in Hole diameter, $d_h = 1$ in Gross tensile area, $A_{gt} = 2 \cdot 0.5 \cdot (b_{conn} - g) \cdot t_{fp}$ $= 2 \cdot 0.5 \cdot (7 - 4) \cdot 0.75$ $= 2.25 in^2$ Net tensile area, $A_{nt} = A_{gt} - 2 \cdot (1 - 0.5) \cdot d_h \cdot t_{fp}$ $= 2.25 - 2 \cdot (1 - 0.5) \cdot 1 \cdot 0.75$ $= 1.5 in^{2}$ Gross shear area, $A_{gv} = 2 \cdot (L + L_e) \cdot t_{fn}$ $= 2 \cdot (9 + 1.5) \cdot 0.75$ $= 15.75 in^2$ Net shear area, $A_{nv} = A_{gv} - 2 \cdot (n - 0.5) \cdot d_h \cdot t_{fp}$ $= 15.75 - 2 \cdot (4 - 0.5) \cdot 1 \cdot 0.75$ $= 10.5 in^2$ Reduction coefficient, $U_{hs} = 1$ Shear yield load, $R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$ $= 0.6 \cdot 50 \cdot 15.75$ = 472.5 kipsShear rupture load, $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$ $= 0.6 \cdot 65 \cdot 10.5$ = 409.5 kipsTension load, $R_t = U_{hs} \cdot F_u \cdot A_{nt}$ $= 1 \cdot 65 \cdot 1.5$ = 97.5 kipsNominal block shear capacity, $R_n = min (R_{gv}, R_{nv}) + R_t$ = min (472.5, 409.5) + 97.5= 507 kips $\Omega = 2$ Block shear capacity (2 L-shaped patterns), $\frac{R_{bs2}}{\Omega} = \frac{R_n}{\Omega}$ $=\frac{507}{2}$ = 253.5 kips L-shaped failure pattern Total length of bolt group, $s_{total} = 9$ in Connection length, $L = s_{total}$

= 9 in

Project:ASD16ValidationExamplesFabricator:ASD16ValidationExamples

Report: Connection Cube Report for Ex. II.B-1

L-shaped failure pattern (continued)

Hole diameter, $d_h = 1$ in Gross tensile area, $A_{gt} = 1 \cdot |g + 0.5 \cdot (b_{conn} - g)| \cdot t_{fn}$ $= 1 \cdot (4 + 0.5 \cdot (7 - 4)) \cdot 0.75$ $= 4.125 in^2$ Net tensile area, $A_{nt} = A_{gt} - 1 \cdot (2 - 0.5) \cdot d_h \cdot t_{fp}$ $= 4.125 - 1 \cdot (2 - 0.5) \cdot 1 \cdot 0.75$ $= 3 in^{2}$ Gross shear area, $A_{gv} = 1 \cdot (L + L_e) \cdot t_{fp}$ $= 1 \cdot (9 + 1.5) \cdot 0.75$ $= 7.875 in^2$ Net shear area, $A_{nv} = A_{gv} - 1 \cdot (n - 0.5) \cdot d_h \cdot t_{fn}$ $= 7.875 - 1 \cdot (4 - 0.5) \cdot 1 \cdot 0.75$ $= 5.25 in^2$ Reduction coefficient, $U_{bs} = 1$ Shear yield load, $R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$ $= 0.6 \cdot 50 \cdot 7.875$ $= 236.25 \ kips$ Shear rupture load, $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$ $= 0.6 \cdot 65 \cdot 5.25$ = 204.75 kipsTension load, $R_t = U_{hs} \cdot F_u \cdot A_{nt}$ $= 1 \cdot 65 \cdot 3$ = 195 kipsNominal block shear capacity, $R_n = min (R_{gv}, R_{nv}) + R_t$ = min (236.25, 204.75) + 195= 399.75 kips $\Omega = 2$ Block shear capacity (L-shaped pattern), $\frac{R_{bs3}}{Q} = \frac{R_n}{Q}$ $=\frac{399.75}{2}$ = 199.875 kips Applied member moment, $M_a = 168 \ kip \cdot ft$ $Unity = \frac{\left(\left(\frac{|M_d|}{(d+t_{fp})} \right) \cdot 12 + T_{a,f} \right)}{\min\left(\frac{R_{bs1}}{\Omega}, \frac{R_{bs2}}{\Omega}, \frac{R_{bs3}}{\Omega} \right)}$

Block shear rupture of flange plate (85). Reference J4.3 (continued)

 $= \frac{\left(\left(\frac{|168|}{(18+0.75)}\right) \cdot 12 + 0\right)}{min (277.875,253.5,199.875)}$ = 0.537936Moment capacity = $\frac{min \left(\frac{R_{bs1}}{\Omega}, \frac{R_{bs2}}{\Omega}, \frac{R_{bs3}}{\Omega}\right) \cdot (d + t_{fp})}{12}$ $= \frac{min (277.875,253.5,199.875) \cdot (18+0.75)}{12}$ $= 312.305 \ kip \cdot ft$ $312.3 \ kip \cdot ft \ge (|168| = 168 \ kip \cdot ft) \quad (OK)$

 $0.538 \le 1$ (OK)

Block shear rupture of plate (6). Reference J4.3

Plate thickness, $t_{pl} = 0.375$ in Yield stress, $F_v = 50 \ ksi$ Tensile strength, $F_u = 65 \ ksi$ Bolt column spacing, $s_{col} = 0$ in Bolt row spacing, s = 3 in Bolt rows, n = 3Column edge distance, $L_{eh} = 1.975$ in Row edge distance, $L_{ev} = 1.5$ in Bolt columns, m = 1Hole diameter, $d_h = 1$ in Hole length, $l_h = 1$ in Total length of bolt group, $s_{total} = 6$ in Gross shear area, $A_{gv} = t_{pl} \cdot (s_{total} + L_{ev})$ $= 0.375 \cdot (6 + 1.5)$ $= 2.8125 in^2$ Net shear area, $A_{nv} = t_{pl} \cdot (s_{total} + L_{ev}) - t_{pl} \cdot (n - 0.5) \cdot d_h$ $= 0.375 \cdot (6 + 1.5) - 0.375 \cdot (3 - 0.5) \cdot 1$ $= 1.875 in^2$ Gross tensile area, $A_{gt} = t_{pl} \cdot (s_{col} \cdot (m - 1) + L_{eh})$ $= 0.375 \cdot (0 \cdot (1 - 1) + 1.975)$ $= 0.740625 in^2$ Net tensile area, $A_{nt} = t_{pl} \cdot (s_{col} \cdot (m - 1) + L_{eh}) - t_{pl} \cdot (m - 0.5) \cdot l_h$ $= 0.375 \cdot (0 \cdot (1 - 1) + 1.975) - 0.375 \cdot (1 - 0.5) \cdot 1$ $= 0.553125 in^2$

 Project:
 ASD16ValidationExamples

 Fabricator:
 ASD16ValidationExamples

 Report:
 Connection Cube Report for Ex. II.B-1

Block shear rupture of plate (6). Reference J4.3 (continued)

Reduction coefficient, $U_{bs} = 1$ Shear yield load, $R_{gv} = 0.6 \cdot F_v \cdot A_{gv}$ $= 0.6 \cdot 50 \cdot 2.8125$ = 84.375 kipsShear rupture load, $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$ $= 0.6 \cdot 65 \cdot 1.875$ = 73.125 kipsTension load, $R_t = U_{hs} \cdot F_u \cdot A_{nt}$ $= 1 \cdot 65 \cdot 0.553125$ $= 35.9531 \ kips$ Nominal block shear capacity, $R_n = min (R_{gv}, R_{nv}) + R_t$ = min (84.375, 73.125) + 35.9531 $= 109.078 \ kips$ $\Omega = 2$ Shear capacity = $\frac{R_n}{\Omega}$ $= \frac{109.078}{2}$ = 54.5391 kips Applied member shear, $V_a = 28 kips$ $Unity = \frac{V_a}{Shear\ capacity}$ $=\frac{28}{54.5}$ = 0.51376154.5 kips \geq 28 kips (OK) $0.514 \le 1$ (OK)

Shear yielding of plate (15). Reference J4.2

Connection yield stress, $F_{y,conn} = 50 \ ksi$ Connection thickness, $t = 0.375 \ in$ Connection length, $L = 9 \ in$ Gross shear area, $A_{gv} = t \cdot L$ $= 0.375 \cdot 9$ $= 3.375 \ in^2$ $\Omega = 1.5$ Shear capacity $= \frac{0.6 \cdot F_{y,conn} \cdot A_{gv}}{\Omega}$ $= \frac{0.6 \cdot 50 \cdot 3.375}{1.5}$ $= 67.5 \ kips$ Applied member shear, $V_a = 28 \ kips$

Shear yielding of plate (15). Reference J4.2 (continued)

 $Unity = \frac{V_a}{Shear \ capacity}$ $= \frac{28}{67.5} \\= 0.414815$ $67.5 \ kips \ge 28 \ kips$ (OK) $0.415 \le 1$ (OK)

Shear yielding of beam web (2). Reference G2.1

Yield stress, $F_v = 50 \ ksi$ Web thickness, $t_w = 0.355$ in Full section depth, d = 18 in Applied member shear, $V_a = 28 kips$ $\Omega = 1.5$ Allowable shear stress, $\frac{F_v}{\Omega} = \frac{0.6 \cdot F_y}{\Omega}$ $= \frac{0.6 \cdot 50}{1.5}$ $= 20 \ ksi$ Web shear area, $A_w = d \cdot t_w$ $= 18 \cdot 0.355$ $= 6.39 in^2$ $Unity = \frac{V_a}{\frac{F_v}{\Omega} \cdot A_w}$ $= \frac{28}{20 \cdot 6.39} = 0.219092$ Shear capacity = $\frac{F_v}{\Omega} \cdot A_w$ $= 20 \cdot 6.39$ = 127.8 kips127.8 kips \geq 28 kips (OK) $0.219 \le 1$ (OK)

Flange plate width to thickness ratio (461). Reference B4.1

Flange plate width, $b_{conn} = 7$ in Flange gage, g = 4 in Flange plate thickness, $t_{fp} = 0.75$ in Flange plate yield stress, $F_{v,pl} = 50 \ ksi$

= 0.148627

Shear of support (36). Reference J4.2

Connection depth, $d_{conn} = 9$ in Supporting member tensile strength, $F_{u,s} = 65$ ksi Supporting member thickness, $t_{sup} = 0.78$ in Web axial load, horizontal component, $P_{a,w,h} = 0$ kips Applied member shear, $V_a = 28$ kips Supporting member yield stress, $F_{y,s} = 50$ ksi Shear area, $A_v = 2 \cdot d_{conn} \cdot t_{sup}$ $= 2 \cdot 9 \cdot 0.78$ = 14.04 in² $\Omega = 2$ $\Omega = 1.5$ Gross shear capacity of support, $R_v = min \left(\frac{0.6 \cdot F_{y,s} \cdot A_v}{\Omega}, \frac{0.6 \cdot F_{u,s} \cdot A_v}{\Omega}\right)$

Shear of support (36). Reference J4.2 (continued)

 $= \min \left(\frac{0.6 \cdot 50 \cdot 14.04}{1.5}, \frac{0.6 \cdot 65 \cdot 14.04}{2} \right)$ = 273.78 kips Unity = $\frac{V_a}{R_v}$ = $\frac{28}{273.78}$ = 0.102272 Shear capacity = R_v = 273.78 kips 273.8 kips ≥ 28 kips (OK) 0.102 ≤ 1 (OK)

Design summary for member [11]'s left end

See Page 4

B_11 [11] Connection strength check: left end

See Page 6

Results summary

Shear Moment Plate on left end of Beam B_11 [11]

Beam to column flange moment connection				
Minimum column web thickness:	0.421 in			
	J10.6, Fig. C-J10.4			
<i>d</i> ₁ :	18.00 in			
<i>M</i> ₁ :	168.00 kip·ft			
<i>d</i> ₂ :	0.00 in			
<i>M</i> ₂ :	0.00 kip·ft			
Story shear:	0.00 kips			
σ _F :	107.52 ksi			
Column resisting moment, $F_y * Z_x / \omega$:	431.64 kip·ft			

Unstiffened column strength				
Flange bending:	113.85 kips	(AISC Spec J10.1)		
Web yielding:	123.67 kips	(AISC Spec J10.2)		
Web crippling:	154.85 kips	(AISC Spec J10.3)		
Web buckling:	172.58 kips	(AISC Spec J10.5)		
Panel zone shear:	123.72 kips	(AISC Spec J10.6)		
Computed flange force:	107.52 kips			

Limit state summary

	Calc. Num.	Unity ratio	Rn/OMEGA	AISC Ref
Strength of column flange:	83.3	0.944	177.9 kip·ft	J10
Rupture of flange plate to support weld:	212	0.920	182.7 kip·ft	J2, Table J2.5
Tension/comp. of flange plate:	46	0.882	190.4 kip·ft	D,E3,J4
Panel zone shear of column web:	395	0.869	193.3 kip·ft	J10.6
Bolt bearing on flange plate:	69	0.862	194.8 kip·ft	J3.11
Bolt bearing on beam flange:	69	0.862	194.8 kip·ft	J3.11
Bolt shear of flange bolts:	68	0.862	194.8 kip·ft	J,Table J3.2
Flexural rupture of beam:	211	0.794	211.5 kip·ft	F
Crippling of column web:	25	0.694	241.9 kip·ft	J10.3
Shear rupture of plate:	21	0.638	43.9 kips	J4.2
Bolt bearing on plate:	110	0.588	47.6 kips	J3.11
Bolt shear of web bolts:	1	0.575	48.7 kips	J3.7, J3.9
Bolt bearing on beam web:	110	0.575	48.7 kips	J3.11
Block shear rupture of beam flange:	259	0.570	294.5 kip·ft	J4.3

Project: ASD16ValidationExamples

Fabricator: ASD16ValidationExamples

Report: Connection Cube Report for Ex. II.B-1

Limit state summary (continued)

Block shear rupture of flange plate:	85	0.538	312.3 kip•ft	J4.3
Block shear rupture of plate:	6	0.514	54.5 kips	J4.3
Shear yielding of plate:	15	0.415	67.5 kips	J4.2
Shear yielding of beam web:	2	0.219	127.8 kips	G2.1
Flange plate width to thickness ratio:	461	0.149	NA	B4.1
Shear of support:	36	0.102	273.8 kips	J4.2

Connection strength

	Value:	Unity ratio:	
Shear:	43.9 kips	0.638	
Moment:	177.9 kip·ft	0.944	
Panel moment:	193.3 kip·ft	0.869	

Notes and conclusions

- Tab weld sized to develop the full plate strength.
- Eccentricity is neglected in the shear connection, misc note 33.
- Column checked for web doublers.
- Column checked for stiffeners.
- CONNECTION IS OK
 - Strength equals or exceeds design loads.

