

SDS2 Steel Connection Design: Connection Cube Report

Cube: Partial depth end plate

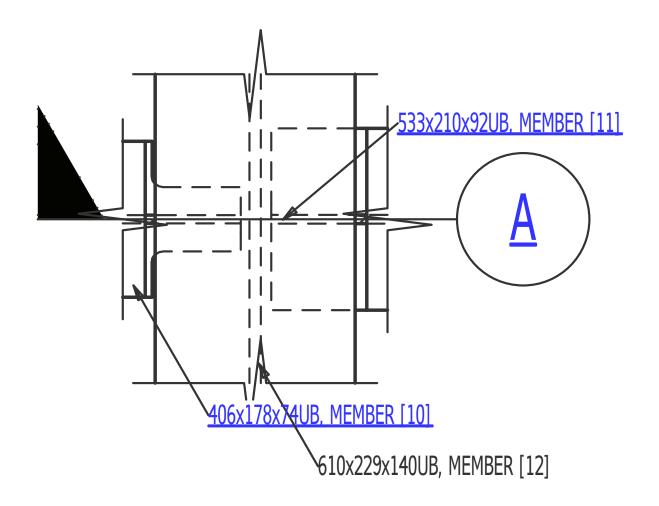
Revision: 0

Project: 1046_Validation_Eurocode_3UK

Engineer:

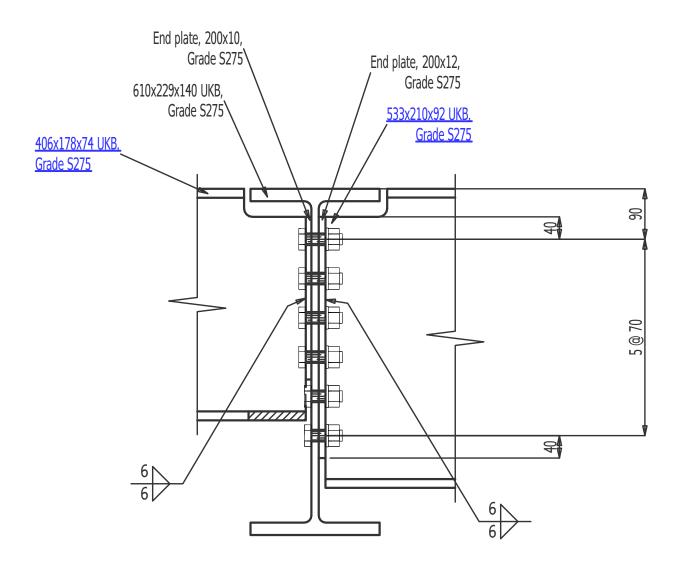
Fabricator: Validation_Eurocode_3UK

Generated by SDS2 x 2025.07 on Wednesday, Mar 19, 2025


Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Partial depth end plate [4] at X=5000, Y=-5000 Elev=-267


Report: Connection Cube Report for Partial depth end plate

TOP SIDE VIEW

Report: Connection Cube Report for Partial depth end plate

Report: Connection Cube Report for Partial depth end plate

Beam B_10 [10]

Design method

• Eurocode 3 (UK NA to BS EN 1993:2005)

Overview

Section size:	406x178x74UB
Sequence:	1
ABM:	N/Assign
Plan length:	5000
Camber:	0.00 mm
Span length:	5000
Slope:	0.00°
Material length:	4983
Plan rotation:	0.00°

Section properties

Material grade:	S275
Yield stress, f _y :	275.0 MPa
Tensile strength, f_u :	430.0 MPa
Depth, h:	412.8 mm
Web thickness, t_w :	9.5 mm
Flange width, b:	179.5 mm
Flange thickness, t _f :	16.0 mm
Root radius, r:	10.2 mm
Distance between web toes of fillets, d:	360.4 mm
Moment of inertia about the major axis, I_{y} :	273.1 10 ⁶ mm ⁴

Report: Connection Cube Report for Partial depth end plate

Design summary

Right end

Connection:	End plate
	Wide gage, Partial depth end plate
	Welded extended tee: No
	Safety Automatic
	Expand Vertical bolt spacing: Auto
	Use web extension: If Required
Elevation:	0
Minus Dim:	6.5 mm (AUTO)
Mtrl Setback:	16.5 mm (AUTO)
Std Detail:	None
Web:	Web vertical
End rotation:	0.00°
Shear:	340.0 kN
Moment:	0.0 kN·m (AUTO)
Tension:	0.0 kN
Compress:	0.0 kN
Tying:	0.0 kN (AUTO)

Report: Connection Cube Report for Partial depth end plate

B_10 [10] Connection strength check: RIGHT END

Member end summary

Connecting nodes

Node 1

Beam: B_11 [12] Section size: 610x229x140UB **End 0 elevation:** 0 mm **End 1 elevation:** 0 mm **Support intersection** 0 elevation: **Supporting beam** 0.00 degrees rotation: (looking toward left end) **Material grade:** S275a Distance between 547.6 mm web toes of fillets, d: **Supporting member** 13.1 mm thickness, t_2 :

Node 1 notes

• A member frames to the opposite side of this member

Factored loads

Shear: 340.0 kN

Design load notes

- Reaction has been input
- Design reaction is 51.5 % of the allowable uniform steel beam load.

Report: Connection Cube Report for Partial depth end plate

Connection summary

• END PLATE SHEAR CONNECTION

Connection details

Plate:	Grade:	S275
	Tensile strength, f_u :	410.0 MPa
	Yield stress, f_y :	275.0 MPa
	Thickness, t:	10.0 mm
	Depth, <i>h</i> :	290.0 mm
	Width, <i>b</i> :	200.0 mm
Welds:	Weld type:	Double fillet
	Weld leg size, s:	6.0 mm
	Weld metal strength, F_{exx} :	0.0 MPa
	Total offoctive wold throat	8.5 mm
	Total effective weld throat, a_e :	111111 6.0
Bolts:	Bolt type:	8.8, Category A
Bolts:		
Bolts:	Bolt type:	8.8, Category A
Bolts:	Bolt type: Hole type in connection:	8.8, Category A Standard round
Bolts:	Bolt type: Hole type in connection: Bolt diameter, <i>d</i> :	8.8, Category A Standard round 20
Bolts:	Bolt type: Hole type in connection: Bolt diameter, <i>d</i> : Bolt rows, <i>n</i> ₁ :	8.8, Category A Standard round 20 4
Bolts:	Bolt type: Hole type in connection: Bolt diameter, d: Bolt rows, n _i : Bolt row spacing, p _i :	8.8, Category A Standard round 20 4 70.0 mm

Connection design lock summary

Locked Via Member Edit: 2
(at dd) Not Locked: 285

Cope information

Top cope depth, d_{nl} : 50.0 mm

Top cope length, l_{nl} : 110.0 mm

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Cope notes

• Cope length dimension is from the end of the beam web.

• At coped section : S_{net} = 278763.76 mm³, h_o = 362.80 mm

Flange cut information

Btm flange cut width: 74.0 mm

Report: Connection Cube Report for Partial depth end plate

Expanded design calculation

Supported beam-web shear (8). Reference Pg 17

Beam yield stress, $f_{v,b1} = 275.0 MPa$

Connection depth, $h_p = 290.0 \ mm$

Web thickness, $t_w = 9.5 \text{ mm}$

Shear Area, $A_g = 0.9 \cdot h_p \cdot t_w$

$$= 0.9 \cdot 290.0 \cdot 9.5$$

$$= 2479.5 \text{ } mm^2$$

$$\gamma_{M0} = 1$$

Allowable shear capacity, $R_{v} = \frac{\left| \frac{f_{y,b1} \cdot A_g}{\sqrt{3} \cdot \gamma_{M0}} \right|}{1000.0}$

$$=\frac{\left(\frac{275.0 \cdot 2479.5}{\sqrt{3} \cdot 1}\right)}{1000.0}$$

$$= 393.7 \ kN$$

Applied member shear, $V_{Ed} = 340.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{R_v}$$

$$= \frac{340.0}{393.7}$$

$$= 0.863661$$

Shear capacity = R_v

$$= 393.7 \ kN$$

$$393.7 \ kN \ge 340.0 \ kN$$
 (OK)

$$0.864 \le 1$$
 (OK)

Supported beam-stability at notch (41). Reference Pg 19

Bottom cope length, $l_{nb} = 0.0 \ mm$

Bottom cope depth, $d_{nb} = 0.0 \ mm$

Top cope length, $l_{nt} = 110.0 \ mm$

Top cope depth, $d_{nt} = 50.0 \ mm$

Beam depth, $h_b = 412.8 \ mm$

Effective top notch depth, $d_{nt,e} = max (d_{nt}, 0.0)$

$$= max (50.0,0.0)$$

$$= 50.0 \, mm$$

Effective top notch length, $l_{nt,e} = l_{nt}$

$$= 110.0 \ mm$$

Effective bottom notch depth, $d_{nb,e} = max (d_{nb}, 0.0)$

Report: Connection Cube Report for Partial depth end plate

Supported beam-stability at notch (41). Reference Pg 19 (continued)

= max (0.0,0.0)

 $= 0.0 \ mm$

Effective bottom notch length, $l_{nb,e} = l_{nb}$

 $= 0.0 \ mm$

Top flange is coped.

Reduced beam depth, $h_o = h_b - d_{nt,e} - d_{nb,e}$

$$= 412.8 - 50.0 - 0.0$$

 $= 362.8 \ mm$

$$\left| d_{nt,e} = 50.0 \ mm \right| \le \left| \frac{h_b}{2} = \frac{412.8}{2} = 206.4 \ mm \right|$$

$$\left(\frac{h_b}{t_w} = \frac{412.8}{9.5} = 43.4526\right) \le 54.3$$

$$(l_{nt,e} = 110.0 \ mm) \le (h_b = 412.8 \ mm)$$

Basic requirements are met. Local stability does not need to be checked.

Connection-block tearing (252). Reference Pg 23

Yield stress, $f_y = 275.0 MPa$

Tensile strength, $f_u = 410.0 MPa$

Connection thickness, t = 10.0 mm

Bolt column spacing, $p_2 = 0.0 \text{ mm}$

Bolt row spacing, $p_1 = 70 \, mm$

Bolt columns, $n_2 = 1$

NS bolt rows, $n_{1.NS} = 4$

Horizontal edge distance, $e_2 = 30.0 \text{ mm}$

Vertical edge distance, $e_1 = 40.0 \text{ mm}$

Calculate block shear capacity of each side

Hole diameter, $d_0 = 22.0 \ mm$

Hole length, $l_h = 22.0 \ mm$

Total length of bolt group, $p_{1,total} = 210.0 \text{ mm}$

Gross shear area, $A_{gv} = t \cdot |p_{1,total} + e_1|$

$$= 10.0 \cdot (210.0 + 40.0)$$

$$= 2500.0 \text{ } mm^2$$

Net shear area, $A_{nv} = t \cdot (p_{1,total} + e_1) - t \cdot (n_{1,NS} - 0.5) \cdot d_0$

$$= 10.0 \cdot (210.0 + 40.0) - 10.0 \cdot (4 - 0.5) \cdot 22.0$$

 $= 1730.0 \text{ } mm^2$

Gross tensile area, $A_{gt} = t \cdot (p_2 \cdot (n_2 - 1) + e_2)$

$$= 10.0 \cdot (0.0 \cdot (1 - 1) + 30.0)$$

$$= 300.0 \text{ } mm^2$$

Net tensile area, $A_{net} = t \cdot (p_2 \cdot (n_2 - 1) + e_2) - t \cdot (n_2 - 0.5) \cdot l_h$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Calculate block shear capacity of each side (continued)

$$= 10.0 \cdot (0.0 \cdot (1 - 1) + 30.0) - 10.0 \cdot (1 - 0.5) \cdot 22.0$$
$$= 190.0 \text{ mm}^2$$

$$\gamma_{M2,1-1} = 1.1$$

$$\gamma_{M0} = 1$$

Shear capacity =
$$\frac{2 \cdot \left(\frac{f_u \cdot A_{net}}{\gamma_{M2,1-1}} + \frac{f_y \cdot A_{nv}}{\sqrt{3} \cdot \gamma_{M0}} \right)}{1000.0}$$

$$= \frac{2 \cdot \left(\frac{410.0 \cdot 190.0}{1.1} + \frac{275.0 \cdot 1730.0}{\sqrt{3} \cdot 1}\right)}{1000.0}$$

$$= 691.0 \ kN$$

Applied member shear, $V_{Ed} = 340.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$
$$= \frac{340.0}{691.0}$$
$$= 0.492041$$

$$691.0 \ kN \ge 340.0 \ kN$$
 (OK)

$$0.492 \le 1$$
 (OK)

Connection-gross shear yielding (15). Reference Pg 23

Connection yield stress, $f_y = 275.0 MPa$

Connection thickness, t = 10.0 mm

Connection depth, h = 290.0 mm

Gross shear area, $A_{gv} = 2 \cdot t \cdot h$

$$= 2 \cdot 10.0 \cdot 290.0$$

$$= 5800.0 \ mm^2$$

$$\gamma_{M0} = 1$$

$$Shear \ capacity = \frac{\left(\frac{\int_{y} \cdot A_{gv}}{\sqrt{3} \cdot \gamma_{M0}}\right)}{1.27}$$

$$1000.0$$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Connection-gross shear yielding (15). Reference Pg 23 (continued)

$$= \frac{\left(\frac{275.0 \cdot 5800.0}{\sqrt{3} \cdot 1}\right)}{1.27}$$

$$= \frac{1000.0}$$

$$= 725.1 \, kN$$

Applied member shear, $V_{Ed} = 340.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$

$$= \frac{340.0}{725.1}$$

$$= 0.468901$$

$$725.1 \ kN \ge 340.0 \ kN$$
 (OK)

$$0.469 \le 1$$
 (OK)

Connection-net shear rupture (21). Reference Pg 23

Connection tensile strength, $f_u = 410.0 MPa$

Bolt rows, $n_1 = 4$

Connection thickness, t = 10.0 mm

Connection depth, h = 290.0 mm

Hole diameter, $d_0 = 22.0 \ mm$

Net shear area,
$$A_{nv} = 2 \cdot t \cdot (h - n_1 \cdot d_0)$$

= $2 \cdot 10.0 \cdot (290.0 - 4 \cdot 22.0)$
= 4040.0 mm^2

$$\gamma_{M2.1-1} = 1.1$$

Shear capacity,
$$V_{Rd} = \frac{\left| \frac{f_u \cdot A_{nv}}{\sqrt{3} \cdot \gamma_{M2,1-1}} \right|}{1000.0}$$

$$= \frac{\left(\frac{410.0 \cdot 4040.0}{\sqrt{3} \cdot 1.1}\right)}{1000.0}$$

$$= 869.4 kN$$

Shear capacity =
$$V_{Rd}$$

$$= 869.4 \ kN$$

Applied member shear, $V_{Ed} = 340.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Connection-net shear rupture (21). Reference Pg 23 (continued)

$$= \frac{340.0}{869.4}$$

$$= 0.391075$$

$$869.4 \ kN \ge 340.0 \ kN$$
 (OK)

$$0.391 \le 1$$
 (OK)

Supported beam-welds (24). Reference Pg 16

Web thickness, $t_w = 9.5 \text{ mm}$

Minimum specified weld throat thickness, $a_{min} = 0.4 \cdot t_w$

$$= 0.4 \cdot 9.5$$

$$= 3.8 \ mm$$

Minimum specified weld leg size, $s_{min} = \frac{a_{min}}{0.707}$

$$= \frac{3.8}{0.707}$$
= 5.4 mm

$$(s = 6.0 \ mm) \ge (s_{min} = 5.4 \ mm)$$

Weld is sized to develop the full strength of the beam web.

$$Unity = 0$$

Connection-bolt shear (1). Reference Pg 21

Number of shear planes, $N_s = 1$

Bolt columns, $n_2 = 2$

Bolt rows, $n_1 = 4$

Tensile stress area of the bolt, $A = 244.8 \text{ } mm^2$

$$\gamma_{M2,1-8} = 1.25$$

$$0.0 \ mm \le \left(\frac{d}{3} = \frac{20.0}{3} = 6.7 \ mm\right)$$

Not necessary to reduce shear capacity for packing.

Bolt Design capacity, $N_b = \frac{\left(\frac{480.0 \cdot A}{\gamma_{M2,1-8}}\right) \cdot N_s}{1000.0}$

$$= \frac{\left(\frac{480.0 \cdot 244.8}{1.25}\right) \cdot 1}{1000.0}$$

$$= 94.0 \ kN$$

Horizontal shear load, $V_{h,Ed} = 0.0 \text{ kN}$

Shear capacity =
$$0.8 \cdot N_b \cdot n_1 \cdot n_2$$

$$= 0.8 \cdot 94.0 \cdot 4 \cdot 2$$

$$= 601.6 \ kN$$

Applied member shear, $V_{Ed} = 340.0 \text{ kN}$

Report: Connection Cube Report for Partial depth end plate

Connection-bolt shear (1). Reference Pg 21 (continued)

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$

$$= \frac{340.0}{601.6}$$

$$= 0.56516$$

$$601.6\ kN \ge 340.0\ kN \quad \text{(OK)}$$

$$0.565 \le 1 \quad \text{(OK)}$$

Connection-bearing on plate (110). Reference Pg 22

Tensile strength, $f_u = 410.0 MPa$

Plate thickness, $t_p = 10.0 \text{ mm}$

Column edge distance, $e_2 = 30.0 \text{ mm}$

Bolt row spacing, $p_1 = 70 \, mm$

Row edge distance, $e_1 = 40.0 \text{ mm}$

Bolt diameter, $d = 20.0 \ mm$

Bolt columns, $n_2 = 2$

Bolt rows, $n_1 = 4$

Total length of bolt group, $p_{1,total} = 210.0 \text{ mm}$

Length of joint,
$$l_j = p_{1,total}$$

= 210.0 mm

Hole diameter, $d_0 = 22.0 \text{ mm}$

$$f_{ub} = 800.0 \, MPa$$

Inner bolt resistance

Bolt row spacing,
$$p_1 = 70.0 \text{ mm}$$

$$\alpha_d = \frac{p_1}{3 \cdot d_0} - 0.25$$

$$= \frac{70.0}{3 \cdot 22.0} - 0.25$$

$$= 0.810606$$

$$\alpha_b = min \left(\alpha_d, \frac{f_{ub}}{f_u}, 1 \right)$$

$$= min \left(0.810606, \frac{800.0}{410.0}, 1 \right)$$

$$= 0.810606$$

$$k_1 = min \left(\frac{2.8 \cdot e_2}{d_0} - 1.7, 2.5 \right)$$

$$= min \left(\frac{2.8 \cdot 30.0}{22.0} - 1.7, 2.5 \right)$$

$$= 2.11818$$

$$\gamma_{M2,1-8} = 1.25$$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Inner bolt resistance (continued)

Bearing resistance of inner bolt, $F_{b,Rd,i} = \frac{\left(\frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t_p}{\gamma_{M2,1-8}}\right)}{1000.0}$

$$= \frac{\left(\frac{2.11818 \cdot 0.810606 \cdot 410.0 \cdot 20.0 \cdot 10.0}{1.25}\right)}{1000.0}$$

$$= 112.6 \ kN$$

End bolt resistance

$$\alpha_{d} = \frac{e_{1}}{3 \cdot d_{0}}$$

$$= \frac{40.0}{3 \cdot 22.0}$$

$$= 0.606061$$

$$\alpha_{b} = min \left(\alpha_{d}, \frac{f_{ub}}{f_{u}}, 1\right)$$

$$= min \left(0.606061, \frac{800.0}{410.0}, 1\right)$$

$$= 0.606061$$

$$k_{1} = min \left(\frac{2.8 \cdot e_{2}}{d_{0}} - 1.7, 2.5\right)$$

$$k_1 = min \left(\frac{2.8 \cdot e_2}{d_0} - 1.7, 2.5 \right)$$
$$= min \left(\frac{2.8 \cdot 30.0}{22.0} - 1.7, 2.5 \right)$$
$$= 2.11818$$

$$\gamma_{M2,1-8} = 1.25$$

Bearing resistance of end bolt, $F_{b,Rd,e} = \frac{\left(\frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t_p}{\gamma_{M2,1-8}}\right)}{1000.0}$

$$= \frac{\left(\frac{2.11818 \cdot 0.606061 \cdot 410.0 \cdot 20.0 \cdot 10.0}{1.25}\right)}{1000.0}$$

$$= 84.2 \ kN$$

Bolt shear resistance

Bolt shear resistance, $F_{v,Rd} = 94.0 \text{ kN}$

Reduction factor, $\beta_{LF} = 1$

$$(0.8 \cdot F_{v,Rd} \cdot \beta_{LF} = 0.8 \cdot 94.0 \cdot 1 = 75.2 \, kN) < (F_{b,Rd,e} = 84.2 \, kN)$$

 $(0.8 \cdot F_{v,Rd} \cdot \beta_{LF} = 0.8 \cdot 94.0 \cdot 1 = 75.2 \, kN) < (F_{b,Rd,i} = 112.6 \, kN)$

Fastener resistance limited by bolt shear resistance

Bearing resistance,
$$F_{b,Rd} = min \left(F_{b,Rd,e}, F_{b,Rd,i}, 0.8 \cdot F_{v,Rd} \cdot \beta_{LF} \right)$$

= $min \left(84.2, 112.6, 0.8 \cdot 94.0 \cdot 1 \right)$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Connection-bearing on plate (110). Reference Pg 22 (continued)

$$= 75.2 \, kN$$

Shear capacity =
$$F_{b,Rd} \cdot n_1 \cdot n_2$$

= 75.2 · 4 · 2
= 601.6 kN

Applied member shear, $V_{Ed} = 340.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$
$$= \frac{340.0}{601.6}$$
$$= 0.56516$$

$$601.6 \ kN \ge 340.0 \ kN$$
 (OK)

 $0.565 \le 1$ (OK)

Connection-bearing on support (110). Reference Pg 22

Tensile strength, $f_u = 410.0 MPa$

Plate thickness, $t_p = 6.5 \ mm$

Column bolt spacing, $p_2 = 140.0 \text{ mm}$

Bolt row spacing, $p_1 = 70 \, mm$

Bolt diameter, d = 20.0 mm

Bolt columns, $n_2 = 2$

Bolt rows, $n_1 = 4$

Total length of bolt group, $p_{1,total} = 210.0 \text{ mm}$

Length of joint,
$$l_j = p_{1,total}$$

$$= 210.0 \ mm$$

Hole diameter, $d_0 = 22.0 \ mm$

$$f_{ub} = 800.0 \, MPa$$

Inner bolt resistance

Bolt row spacing, $p_1 = 70.0 \, mm$

$$\alpha_d = \frac{p_1}{3 \cdot d_0} - 0.25$$

$$= \frac{70.0}{3 \cdot 22.0} - 0.25$$

$$= 0.810606$$

$$\alpha_t = \min \left| \alpha_t \frac{f_{ub}}{1} \right|$$

$$\alpha_b = min \left(\alpha_d, \frac{f_{ub}}{f_u}, 1 \right)$$

$$= min \left(0.810606, \frac{800.0}{410.0}, 1 \right)$$

$$= 0.810606$$

$$k_1 = min \left(\frac{1.4 \cdot p_2}{d_0} - 1.7, 2.5 \right)$$
$$= min \left(\frac{1.4 \cdot 140.0}{22.0} - 1.7, 2.5 \right)$$

$$= min \left(\frac{1.4 \cdot 140.0}{22.0} - 1.7, 2.5 \right)$$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Inner bolt resistance (continued)

$$= 2.5$$

$$\gamma_{M2,1-8} = 1.25$$

Bearing resistance of inner bolt, $F_{b,Rd,i} = \frac{\left(\frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t_p}{\gamma_{M2,1-8}}\right)}{1000.0}$

$$=\frac{\left(\frac{2.5\cdot0.810606\cdot410.0\cdot20.0\cdot6.5}{1.25}\right)}{1000.0}$$

$$= 87.1 \ kN$$

End bolt resistance

$$\alpha_b = min \left(\frac{f_{ub}}{f_u}, 1 \right)$$

$$= min \left(\frac{800.0}{410.0}, 1 \right)$$

$$= 1$$

$$k_1 = min \left(\frac{1.4 \cdot p_2}{d_0} - 1.7, 2.5 \right)$$

$$= min \left(\frac{1.4 \cdot 140.0}{22.0} - 1.7, 2.5 \right)$$

$$\gamma_{M2,1-8} = 1.25$$

Bearing resistance of end bolt, $F_{b,Rd,e} = \frac{\left|\frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t_p}{\gamma_{M2,1-8}}\right|}{1000.0}$

$$=\frac{\left(\frac{2.5\cdot 1\cdot 410.0\cdot 20.0\cdot 6.5}{1.25}\right)}{1000.0}$$

$$= 107.4 \, kN$$

Bolt shear resistance

Bolt shear resistance, $F_{v,Rd} = 94.0 \text{ kN}$

Reduction factor, $\beta_{LF} = 1$

$$\begin{array}{l} \left(0.8 \cdot F_{v,Rd} \cdot \beta_{LF} = 0.8 \cdot 94.0 \cdot 1 = 75.2 \, kN\right) < \left(F_{b,Rd,e} = 107.4 \, kN\right) \\ \left(0.8 \cdot F_{v,Rd} \cdot \beta_{LF} = 0.8 \cdot 94.0 \cdot 1 = 75.2 \, kN\right) < \left(F_{b,Rd,i} = 87.1 \, kN\right) \end{array}$$

Fastener resistance limited by bolt shear resistance

Bearing resistance, $F_{b,Rd} = min \left(F_{b,Rd,e} F_{b,Rd,i}, 0.8 \cdot F_{v,Rd} \cdot \beta_{LF} \right)$

$$= min (107.4,87.1,0.8 \cdot 94.0 \cdot 1)$$

$$= 75.2 \, kN$$

Shear capacity = $F_{b,Rd} \cdot n_1 \cdot n_2$

Report: Connection Cube Report for Partial depth end plate

Connection-bearing on support (110). Reference Pg 22 (continued)

$$= 75.2 \cdot 4 \cdot 2$$

= 601.6 *kN*

Applied member shear, $V_{Ed} = 340.0 \text{ kN}$

Unity =
$$\frac{V_{Ed}}{Shear\ capacity}$$

= $\frac{340.0}{601.6}$
= 0.56516
601.6 $kN \ge 340.0\ kN$ (OK)
0.565 ≤ 1 (OK)

Supported beam-resistance at notch (364). Reference Pg 18

Yield stress of the supported beam, $f_{v,b1} = 275.0 MPa$

Thickness of the end plate, $t_p = 10.0 \text{ mm}$

Bottom cope length, $l_{nb} = 0.0 \ mm$

Bottom cope depth, $d_{nb} = 0.0 \ mm$

Top cope length, $l_{nt} = 110.0 \text{ mm}$

Top cope depth, $d_{nt} = 50.0 \ mm$

k distance of the supported beam, $k_{b1} = 26.2 \text{ mm}$

Flange thickness of the supported beam, $t_{f,b1} = 16.0 \text{ mm}$

Flange width of the supported beam, $b_{f,b1} = 74.0 \, mm$

Web thickness of the supported beam, $t_{w,b1} = 9.5 \text{ mm}$

Height of the supported beam, $h_{b1} = 412.8 \text{ mm}$

Applied member shear, $V_{Ed} = 340.0 \text{ kN}$

Effective top cope depth, $d_{nt,e} = max (d_{nt}, 0.0)$

$$= max (50.0,0.0)$$

$$= 50.0 \ mm$$

Effective top cope length, $l_{nt,e} = l_{nt}$

$$= 110.0 \ mm$$

Effective bottom cope depth, $d_{nb,e} = max (d_{nb}, 0.0)$

$$= max (0.0,0.0)$$

$$= 0.0 mm$$

Effective bottom cope length, $l_{nb,e} = l_{nb}$

$$= 0.0 \ mm$$

Top flange is coped.

Distance from supporting face to end of cope, $e = l_{nt.e} + t_p$

$$= 110.0 + 10.0$$

$$= 120.0 \ mm$$

Area of the Tee section,
$$A_{Tee} = (h_{b1} - d_{nt,e} - t_{f,b1}) \cdot t_{w,b1} + b_{f,b1} \cdot t_{f,b1}$$

= $(412.8 - 50.0 - 16.0) \cdot 9.5 + 74.0 \cdot 16.0$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Supported beam-resistance at notch (364). Reference Pg 18 (continued)

$$= 4478.6 \ mm^2$$

Shear area at the notch for single notched beam, $A_{v,N} = A_{Tee} - b_{f,b1} \cdot t_{f,b1} + \frac{k_{b1} \cdot t_{f,b1}}{2}$

$$= 4478.6 - 74.0 \cdot 16.0 + \frac{26.2 \cdot 16.0}{2}$$

$$= 3504.2 \ mm^2$$

Elastic modulus of the Tee section at the notch, $W_{el,N,y} = 278763.8 \text{ } mm^3$

$$\gamma_{M0} = 1$$

Project:

Shear resistance at the notch for single notched beam, $V_{pl,N,Rd} = \frac{\left|\frac{A_{v,N} \cdot f_{y,b1}}{1.73205 \cdot \gamma_{M0}}\right|}{1000.0}$

$$= \frac{\left(\frac{3504.2 \cdot 275.0}{1.73205 \cdot 1}\right)}{1000.0}$$

$$= 556.4 \ kN$$

$$\gamma_{M0} = 1$$

Moment resistance of a single notched beam at the notch in the presence of shear, $M_{v,N,Rd} = \frac{\left|\frac{f_{y,b1} \cdot W_{el,N,y}}{\gamma_{M0}}\right| \cdot \left|1 - \left|\frac{2 \cdot V_{Ed}}{V_{pl,N,Rd}}\right|}{1000000.0}$

$$= \frac{\left(\frac{275.0 \cdot 278763.8}{1}\right) \cdot \left(1 - \left(\frac{2 \cdot 340.0}{556.4} - 1\right)^{2}\right)}{1000000.0}$$

$$= 72.9 kN \cdot m$$

Shear resistance at the end of the beam, $V_{Rd} = \left(\frac{M_{v,N,Rd}}{e}\right) \cdot 1000.0$

$$= \left(\frac{72.9}{120.0}\right) \cdot 1000.0$$

= 607.3 kN

Shear capacity =
$$V_{Rd}$$

$$= 607.3 \ kN$$

Applied member shear, $V_{Ed} = 340.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$
$$= \frac{340.0}{607.3}$$
$$= 0.559856$$

$$607.3 \ kN \ge 340.0 \ kN$$
 (OK)

$$0.560 \le 1$$
 (OK)

Report: Connection Cube Report for Partial depth end plate

Connection-in-plane bending (365). Reference Pg 23

Not necessary to check in-plane bending.

Unity = 0

Supporting member-shear (409). Reference Pg 24

Tensile strength of the supporting member, $f_{u,2} = 410.0 MPa$

Yield stress of the supporting member, $f_{v,2} = 265.0 MPa$

Supporting thickness, $t_2 = 6.5 \text{ mm}$

Bolt diameter, d = 20.0 mm

Edge distance to bottom of support, $e_{1,b} = 317.2 \text{ mm}$

Edge distance to top of support, $e_{1,t} = 90.0 \text{ mm}$

Bolt gage, $p_3 = 140.0 \text{ mm}$

Bolt row spacing, $p_1 = 70.0 \, mm$

Bolt rows, $n_1 = 4$

$$e_t = min (e_{1,b} 5 \cdot d)$$

= $min (90.0, 5 \cdot 20.0)$

$$= 90.0 \ mm$$

$$e_b = min \left(e_{1,b}, \frac{p_3}{2}, 5 \cdot d \right)$$

$$= min \left(317.2, \frac{140.0}{2}, 5 \cdot 20.0 \right)$$

$$= 70.0 \ mm$$

Hole diameter, $d_0 = 22.0 \text{ mm}$

Gross shear area,
$$A_{gv} = t_2 \cdot (e_t + (n_1 - 1) \cdot p_1 + e_b)$$

$$= 6.5 \cdot (90.0 + (4 - 1) \cdot 70.0 + 70.0)$$

$$= 2423.5 \ mm^2$$

Net shear area,
$$A_{nv} = A_{gv} - n_1 \cdot d_0 \cdot t_2$$

$$= 2423.5 - 4 \cdot 22.0 \cdot 6.5$$

$$= 1847.1 \ mm^2$$

$$\gamma_{M2,1-1} = 1.1$$

$$\gamma_{M0} = 1$$

Minimum shear resistance of the supporting member,
$$V_{Rd,min} = \frac{2 \cdot min \left[\frac{f_{y,2} \cdot A_{gv}}{\sqrt{3} \cdot \gamma_{M0}}, \frac{f_{u,2} \cdot A_{nv}}{\sqrt{3} \cdot \gamma_{M2,1-1}} \right]}{1000.0}$$

$$= \frac{2 \cdot \textit{min} \left(\frac{265.0 \cdot 2423.5}{\sqrt{3} \cdot 1}, \frac{410.0 \cdot 1847.1}{\sqrt{3} \cdot 1.1}\right)}{1000.0}$$

$$= 741.6 \, kN$$

Shear capacity =
$$V_{Rd,min}$$

Report: Connection Cube Report for Partial depth end plate

Supporting member-shear (409). Reference Pg 24 (continued)

$$= 741.6 \, kN$$

Applied member shear, $V_{Ed} = 340.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$
$$= \frac{340.0}{741.6}$$
$$= 0.458469$$

 $741.6 \ kN \ge 340.0 \ kN$ (OK)

 $0.458 \le 1$ (OK)

Report: Connection Cube Report for Partial depth end plate

Beam B_12 [11]

Design method

• Eurocode 3 (UK NA to BS EN 1993:2005)

Overview

Section size:	533x210x92UB
Sequence:	1
ABM:	N/Assign
Plan length:	5000
Camber:	0.00 mm
Span length:	5000
Slope:	0.00°
Material length:	4981
Plan rotation:	0.00°

Section properties

Material grade:	S275
Yield stress, f _y :	275.0 MPa
Tensile strength, f_u :	430.0 MPa
Depth, h:	533.1 mm
Web thickness, t_w :	10.1 mm
Flange width, b:	209.3 mm
Flange thickness, t _f :	15.6 mm
Root radius, r:	12.7 mm
Distance between web toes of fillets, d:	476.5 mm
Moment of inertia about the major axis, I_{ν} :	552.3 10 ⁶ mm ⁴

Report: Connection Cube Report for Partial depth end plate

Design summary

Left end

Connection:	End plate
	Wide gage, Partial depth end plate
	Welded extended tee: No
	Safety Automatic
	Expand Vertical bolt spacing: Auto
	Use web extension: If Required
Elevation:	0
Minus Dim:	6.5 mm (AUTO)
Mtrl Setback:	18.5 mm (AUTO)
Std Detail:	None
Web:	Web vertical
End rotation:	0.00°
Shear:	550.0 kN
Moment:	0.0 kN·m (AUTO)
Tension:	0.0 kN
Compress:	0.0 kN
Tying:	0.0 kN (AUTO)

Report: Connection Cube Report for Partial depth end plate

B_12 [11] Connection strength check: LEFT END

Member end summary

Connecting nodes

Node 1

Beam:	B_11 [12]
Section size:	610x229x140UB
End 0 elevation:	0 mm
End 1 elevation:	0 mm
Support intersection elevation:	0
Supporting beam rotation:	0.00 degrees
	(looking toward left end)
Material grade:	S275a
Distance between web toes of fillets, d:	547.6 mm
Supporting member thickness, t ₂ :	13.1 mm

Node 1 notes

A member frames to the opposite side of this member

Factored loads

Shear: 550.0 kN

Design load notes

- Reaction has been input
- Design reaction is 53.0 % of the allowable uniform steel beam load.

Report: Connection Cube Report for Partial depth end plate

Connection summary

• END PLATE SHEAR CONNECTION

Connection details

Plate:	Grade:	S275
	Tensile strength, f _u :	410.0 MPa
	Yield stress, f_y :	275.0 MPa
	Thickness, t:	12.0 mm
	Depth, h:	430.0 mm
	Width, <i>b</i> :	200.0 mm
Welds:	Weld type:	Double fillet
	Weld leg size, s:	6.0 mm
	Weld metal strength, F_{exx} :	0.0 MPa
	Total effective weld throat, a_e :	8.5 mm
Bolts:	Bolt type:	8.8, Category A
	Hole type in connection:	Standard round
	Bolt diameter, <i>d</i> :	20
	Bolt rows, n_i :	6
	Bolt row spacing, p_I :	70.0 mm
	Bolt gage, p ₃ :	140.0 mm
	Row edge distance, e_l :	40.0 mm
Connection geometry:	Dihedral angle, θ :	90.00 °

Connection design lock summary

Locked Via Member Edit: 3
(at dd) Not Locked: 284

Cope information

Top cope depth, d_{nl} : 50.0 mm

Top cope length, l_{nl} : 110.0 mm

Report: Connection Cube Report for Partial depth end plate

Cope notes

• Cope length dimension is from the end of the beam web.

• At coped section : S_{net} = 597565.19 mm³, h_o = 483.10 mm

Report: Connection Cube Report for Partial depth end plate

Expanded design calculation

Supported beam-web shear (8). Reference Pg 17

Beam yield stress, $f_{v,b1} = 275.0 MPa$

Connection depth, $h_p = 430.0 \ mm$

Web thickness, $t_w = 10.1 \ mm$

Shear Area, $A_g = 0.9 \cdot h_p \cdot t_w$

$$= 0.9 \cdot 430.0 \cdot 10.1$$

$$= 3908.7 \ mm^2$$

$$\gamma_{M0} = 1$$

Allowable shear capacity, $R_{v} = \frac{\left| \frac{f_{y,b1} \cdot A_g}{\sqrt{3} \cdot \gamma_{M0}} \right|}{1000.0}$

$$= \frac{\left(\frac{275.0 \cdot 3908.7}{\sqrt{3} \cdot 1}\right)}{1000.0}$$

$$= 620.6 \ kN$$

Applied member shear, $V_{Ed} = 550.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{R_{v}}$$

$$= \frac{550.0}{620.6}$$

$$= 0.886255$$

Shear capacity = R_v

 $= 620.6 \ kN$

$$620.6 \ kN \ge 550.0 \ kN$$
 (OK)

 $0.886 \le 1$ (OK)

Supported beam-stability at notch (41). Reference Pg 19

Bottom cope length, $l_{nb} = 0.0 \ mm$

Bottom cope depth, $d_{nb} = 0.0 \ mm$

Top cope length, $l_{nt} = 110.0 \ mm$

Top cope depth, $d_{nt} = 50.0 \ mm$

Beam depth, $h_b = 533.1 \ mm$

Effective top notch depth, $d_{nt,e} = max (d_{nt}, 0.0)$

$$= max (50.0,0.0)$$

$$= 50.0 \, mm$$

Effective top notch length, $l_{nt,e} = l_{nt}$

 $= 110.0 \ mm$

Effective bottom notch depth, $d_{nb,e} = max (d_{nb}, 0.0)$

Report: Connection Cube Report for Partial depth end plate

Supported beam-stability at notch (41). Reference Pg 19 (continued)

= max (0.0,0.0)

 $= 0.0 \ mm$

Effective bottom notch length, $l_{nb,e} = l_{nb}$

 $= 0.0 \ mm$

Top flange is coped.

Reduced beam depth, $h_o = h_b - d_{nt,e} - d_{nb,e}$

$$= 533.1 - 50.0 - 0.0$$

 $= 483.1 \ mm$

$$\left| d_{nt,e} = 50.0 \ mm \right| \le \left| \frac{h_b}{2} = \frac{533.1}{2} = 266.6 \ mm \right|$$

$$\left| \frac{h_b}{t_w} = \frac{533.1}{10.1} = 52.7822 \right| \le 54.3$$

$$(l_{nt,e} = 110.0 \ mm) \le (h_b = 533.1 \ mm)$$

Basic requirements are met. Local stability does not need to be checked.

Connection-block tearing (252). Reference Pg 23

Yield stress, $f_y = 275.0 MPa$

Tensile strength, $f_u = 410.0 MPa$

Connection thickness, t = 12.0 mm

Bolt column spacing, $p_2 = 0.0 \text{ mm}$

Bolt row spacing, $p_1 = 70 \, mm$

Bolt columns, $n_2 = 1$

NS bolt rows, $n_{1.NS} = 6$

Horizontal edge distance, $e_2 = 30.0 \text{ mm}$

Vertical edge distance, $e_1 = 40.0 \text{ mm}$

Calculate block shear capacity of each side

Hole diameter, $d_0 = 22.0 \ mm$

Hole length, $l_h = 22.0 \ mm$

Total length of bolt group, $p_{1,total} = 350.0 \text{ mm}$

Gross shear area, $A_{gv} = t \cdot (p_{1,total} + e_1)$

$$= 12.0 \cdot (350.0 + 40.0)$$

 $= 4680.0 \ mm^2$

Net shear area, $A_{nv} = t \cdot (p_{1,total} + e_1) - t \cdot (n_{1,NS} - 0.5) \cdot d_0$

$$= 12.0 \cdot (350.0 + 40.0) - 12.0 \cdot (6 - 0.5) \cdot 22.0$$

 $= 3228.0 \text{ } mm^2$

Gross tensile area, $A_{gt} = t \cdot (p_2 \cdot (n_2 - 1) + e_2)$

$$= 12.0 \cdot (0.0 \cdot (1 - 1) + 30.0)$$

 $= 360.0 \text{ } mm^2$

Net tensile area, $A_{net} = t \cdot (p_2 \cdot (n_2 - 1) + e_2) - t \cdot (n_2 - 0.5) \cdot l_h$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Calculate block shear capacity of each side (continued)

$$= 12.0 \cdot (0.0 \cdot (1 - 1) + 30.0) - 12.0 \cdot (1 - 0.5) \cdot 22.0$$

$$= 228.0 \ mm^2$$

$$\gamma_{M2,1-1} = 1.1$$

$$\gamma_{M0} = 1$$

Shear capacity =
$$\frac{2 \cdot \left(\frac{f_u \cdot A_{net}}{\gamma_{M2,1-1}} + \frac{f_y \cdot A_{nv}}{\sqrt{3} \cdot \gamma_{M0}} \right)}{1000.0}$$

$$= \frac{2 \cdot \left(\frac{410.0 \cdot 228.0}{1.1} + \frac{275.0 \cdot 3228.0}{\sqrt{3} \cdot 1}\right)}{1000.0}$$

$$= 1195.0 \ kN$$

Applied member shear, $V_{Ed} = 550.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$
$$= \frac{550.0}{1195.0}$$
$$= 0.460251$$

$$1195.0 \ kN \ge 550.0 \ kN$$
 (OK)

$$0.460 \le 1$$
 (OK)

Connection-gross shear yielding (15). Reference Pg 23

Connection yield stress, $f_y = 275.0 MPa$

Connection thickness, t = 12.0 mm

Connection depth, h = 430.0 mm

Gross shear area, $A_{gv} = 2 \cdot t \cdot h$

$$= 2 \cdot 12.0 \cdot 430.0$$

$$= 10320.0 \ mm^2$$

$$\gamma_{M0} = 1$$

$$Shear\ capacity = \frac{\left(\frac{\left(\frac{f_y \cdot A_{gy}}{\sqrt{3} \cdot \gamma_{M0}}\right)}{1.27}\right)}{10000}$$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Connection-gross shear yielding (15). Reference Pg 23 (continued)

$$= \frac{\left| \frac{\left(\frac{275.0 \cdot 10320.0}{\sqrt{3} \cdot 1} \right)}{1.27} \right|}{1.27}$$

$$= 1290.2 kN$$

Applied member shear, $V_{Ed} = 550.0 \text{ kN}$

Unity =
$$\frac{V_{Ed}}{Shear\ capacity}$$

= $\frac{550.0}{1290.2}$
= 0.426291
 $1290.2\ kN \ge 550.0\ kN$ (OK)
 $0.426 \le 1$ (OK)

Connection-net shear rupture (21). Reference Pg 23

Connection tensile strength, $f_u = 410.0 MPa$

Bolt rows, $n_1 = 6$

Connection thickness, t = 12.0 mm

Connection depth, h = 430.0 mm

Hole diameter, $d_0 = 22.0 \ mm$

Net shear area,
$$A_{nv} = 2 \cdot t \cdot (h - n_1 \cdot d_0)$$

= $2 \cdot 12.0 \cdot (430.0 - 6 \cdot 22.0)$
= 7152.0 mm^2

$$\gamma_{M2.1-1} = 1.1$$

Shear capacity,
$$V_{Rd} = \frac{\left| \frac{f_u \cdot A_{nv}}{\sqrt{3} \cdot \gamma_{M2,1-1}} \right|}{1000.0}$$

$$= \frac{\left(\frac{410.0 \cdot 7152.0}{\sqrt{3} \cdot 1.1}\right)}{1000.0}$$

$$= 1539.1 kN$$

Shear capacity =
$$V_{Rd}$$

$$= 1539.1 \ kN$$

Applied member shear, $V_{Ed} = 550.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Connection-net shear rupture (21). Reference Pg 23 (continued)

$$= \frac{550.0}{1539.1}$$
$$= 0.357352$$

$$1539.1 \ kN \ge 550.0 \ kN$$
 (OK)

$$0.357 \le 1$$
 (OK)

Supported beam-welds (24). Reference Pg 16

Web thickness, $t_w = 10.1 \text{ mm}$

Minimum specified weld throat thickness, $a_{min} = 0.4 \cdot t_w$

$$= 0.4 \cdot 10.1$$

$$= 4.0 \ mm$$

Minimum specified weld leg size, $s_{min} = \frac{a_{min}}{0.707}$

$$= \frac{4.0}{0.707}$$
= 5.7 mm

$$(s = 6.0 \ mm) \ge (s_{min} = 5.7 \ mm)$$

Weld is sized to develop the full strength of the beam web.

$$Unity = 0$$

Connection-bolt shear (1). Reference Pg 21

Number of shear planes, $N_s = 1$

Bolt columns, $n_2 = 2$

Bolt rows, $n_1 = 6$

Tensile stress area of the bolt, $A = 244.8 \text{ } mm^2$

$$\gamma_{M2,1-8} = 1.25$$

$$0.0 \ mm \le \left(\frac{d}{3} = \frac{20.0}{3} = 6.7 \ mm\right)$$

Not necessary to reduce shear capacity for packing.

Bolt Design capacity, $N_b = \frac{\left(\frac{480.0 \cdot A}{\gamma_{M2,1-8}}\right) \cdot N_s}{1000.0}$

$$= \frac{\left(\frac{480.0 \cdot 244.8}{1.25}\right) \cdot 1}{1000.0}$$

$$= 94.0 \ kN$$

Horizontal shear load, $V_{h,Ed} = 0.0 \text{ kN}$

Shear capacity =
$$0.8 \cdot N_b \cdot n_1 \cdot n_2$$

$$= 0.8 \cdot 94.0 \cdot 6 \cdot 2$$

$$= 902.4 kN$$

Applied member shear, $V_{Ed} = 550.0 \text{ kN}$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Connection-bolt shear (1). Reference Pg 21 (continued)

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$

$$= \frac{550.0}{902.4}$$

$$= 0.609486$$

$$902.4\ kN \ge 550.0\ kN \quad (OK)$$

$$0.609 \le 1 \quad (OK)$$

Connection-bearing on plate (110). Reference Pg 22

Tensile strength, $f_u = 410.0 MPa$

Plate thickness, $t_p = 12.0 \text{ mm}$

Column edge distance, $e_2 = 30.0 \text{ mm}$

Bolt row spacing, $p_1 = 70 \, mm$

Row edge distance, $e_1 = 40.0 \text{ mm}$

Bolt diameter, $d = 20.0 \ mm$

Bolt columns, $n_2 = 2$

Bolt rows, $n_1 = 6$

Total length of bolt group, $p_{1,total} = 350.0 \text{ mm}$

Bolt row spacing, $p_1 = 70.0 \, mm$

Length of joint,
$$l_j = p_{1,total}$$

= 350.0 mm

Hole diameter, $d_0 = 22.0 \text{ mm}$

$$f_{ub} = 800.0 \, MPa$$

Inner bolt resistance

$$\alpha_d = \frac{p_1}{3 \cdot d_0} - 0.25$$

$$= \frac{70.0}{3 \cdot 22.0} - 0.25$$

$$= 0.810606$$

$$\alpha_b = min \left(\alpha_d, \frac{f_{ub}}{f_u}, 1 \right)$$

$$= min \left(0.810606, \frac{800.0}{410.0}, 1 \right)$$

$$= 0.810606$$

$$k_1 = min \left(\frac{2.8 \cdot e_2}{d_0} - 1.7, 2.5 \right)$$
$$= min \left(\frac{2.8 \cdot 30.0}{22.0} - 1.7, 2.5 \right)$$
$$= 2.11818$$

$$\gamma_{M2,1-8} = 1.25$$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Inner bolt resistance (continued)

Bearing resistance of inner bolt, $F_{b,Rd,i} = \frac{\left(\frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t_p}{\gamma_{M2,1-8}}\right)}{1000.0}$

$$= \frac{\left(\frac{2.11818 \cdot 0.810606 \cdot 410.0 \cdot 20.0 \cdot 12.0}{1.25}\right)}{1000.0}$$

$$= 135.2 \ kN$$

End bolt resistance

$$\alpha_{d} = \frac{e_{1}}{3 \cdot d_{0}}$$

$$= \frac{40.0}{3 \cdot 22.0}$$

$$= 0.606061$$

$$\alpha_{b} = min \left(\alpha_{d}, \frac{f_{ub}}{f_{u}}, 1\right)$$

$$= min \left(0.606061, \frac{800.0}{410.0}, 1\right)$$

$$= 0.606061$$

$$k_{1} = min \left(\frac{2.8 \cdot e_{2}}{f_{u}} - 1.7, 2.5\right)$$

$$k_1 = min \left(\frac{2.8 \cdot e_2}{d_0} - 1.7, 2.5 \right)$$
$$= min \left(\frac{2.8 \cdot 30.0}{22.0} - 1.7, 2.5 \right)$$
$$= 2.11818$$

$$\gamma_{M2,1-8} = 1.25$$

Bearing resistance of end bolt, $F_{b,Rd,e} = \frac{\left(\frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t_p}{\gamma_{M2,1-8}}\right)}{1000.0}$

$$= \frac{\left(\frac{2.11818 \cdot 0.606061 \cdot 410.0 \cdot 20.0 \cdot 12.0}{1.25}\right)}{1000.0}$$

$$= 101.1 kN$$

Bolt shear resistance

Bolt shear resistance, $F_{v,Rd} = 94.0 \text{ kN}$

Reduction factor, $\beta_{LF} = 0.9875$

$$\begin{array}{l} \left[0.\overset{1}{8} \cdot F_{v,Rd} \cdot \beta_{LF} = 0.8 \cdot 94.0 \cdot 0.9875 = 74.3 \ kN\right] < \left[F_{b,Rd,e} = 101.1 \ kN\right] \\ \left[0.8 \cdot F_{v,Rd} \cdot \beta_{LF} = 0.8 \cdot 94.0 \cdot 0.9875 = 74.3 \ kN\right] < \left[F_{b,Rd,i} = 135.2 \ kN\right] \end{aligned}$$

Fastener resistance limited by bolt shear resistance

Bearing resistance,
$$F_{b,Rd} = min \left(F_{b,Rd,e}, F_{b,Rd,v}, 0.8 \cdot F_{v,Rd} \cdot \beta_{LF} \right)$$

= $min \left(101.1, 135.2, 0.8 \cdot 94.0 \cdot 0.9875 \right)$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Connection-bearing on plate (110). Reference Pg 22 (continued)

$$= 74.3 \, kN$$

Shear capacity =
$$F_{b,Rd} \cdot n_1 \cdot n_2$$

= 74.3 · 6 · 2
= 891.1 kN

Applied member shear, $V_{Ed} = 550.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$
$$= \frac{550.0}{891.1}$$
$$= 0.617215$$

$$891.1 \ kN \ge 550.0 \ kN$$
 (OK)

 $0.617 \le 1$ (OK)

Connection-bearing on support (110). Reference Pg 22

Tensile strength, $f_u = 410.0 MPa$

Plate thickness, $t_p = 6.5 mm$

Column bolt spacing, $p_2 = 140.0 \text{ mm}$

Bolt row spacing, $p_1 = 70 \, mm$

Bolt diameter, d = 20.0 mm

Bolt columns, $n_2 = 2$

Bolt rows, $n_1 = 6$

Total length of bolt group, $p_{1,total} = 350.0 \text{ mm}$

Length of joint,
$$l_j = p_{1,total}$$

= 350.0 mm

Hole diameter, $d_0 = 22.0 \text{ mm}$

$$f_{ub} = 800.0 \, MPa$$

Inner bolt resistance

Bolt row spacing, $p_1 = 70.0 \, mm$

$$\begin{split} \alpha_d &= \frac{p_1}{3 \cdot d_0} - 0.25 \\ &= \frac{70.0}{3 \cdot 22.0} - 0.25 \\ &= 0.810606 \\ \alpha_b &= min \left(\alpha_d, \frac{f_{ub}}{f_u}, 1 \right) \\ &= min \left(0.810606, \frac{800.0}{410.0}, 1 \right) \\ &= 0.810606 \\ k_1 &= min \left(\frac{1.4 \cdot p_2}{d_0} - 1.7, 2.5 \right) \\ &= min \left(\frac{1.4 \cdot 140.0}{22.0} - 1.7, 2.5 \right) \end{split}$$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Inner bolt resistance (continued)

$$= 2.5$$

$$\gamma_{M2.1-8} = 1.25$$

Bearing resistance of inner bolt, $F_{b,Rd,i} = \frac{\left(\frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t_p}{\gamma_{M2,1-8}}\right)}{1000.0}$

$$=\frac{\left(\frac{2.5\cdot0.810606\cdot410.0\cdot20.0\cdot6.5}{1.25}\right)}{1000.0}$$

$$= 87.1 \ kN$$

End bolt resistance

$$\alpha_b = \min \left(\frac{f_{ub}}{f_u}, 1 \right)$$

$$= \min \left(\frac{800.0}{410.0}, 1 \right)$$

$$= 1$$

$$k_1 = \min \left(\frac{1.4 \cdot p_2}{d_0} - 1.7, 2.5 \right)$$

$$= \min \left(\frac{1.4 \cdot 140.0}{22.0} - 1.7, 2.5 \right)$$

$$= 2.5$$

$$\gamma_{M2,1-8} = 1.25$$

Bearing resistance of end bolt, $F_{b,Rd,e} = \frac{\left(\frac{k_1 \cdot \alpha_b \cdot f_u \cdot d \cdot t_p}{\gamma_{M2,1-8}}\right)}{1000.0}$

$$= \frac{\left(\frac{2.5 \cdot 1 \cdot 410.0 \cdot 20.0 \cdot 6.5}{1.25}\right)}{1000.0}$$

$$= 107.4 \ kN$$

Bolt shear resistance

Bolt shear resistance, $F_{v,Rd} = 94.0 \text{ kN}$

Reduction factor, $\beta_{LF} = 0.9875$

$$\begin{array}{l} \left(0.8 \cdot F_{v,Rd} \cdot \beta_{LF} = 0.8 \cdot 94.0 \cdot 0.9875 = 74.3 \, kN\right) < \left(F_{b,Rd,e} = 107.4 \, kN\right) \\ \left(0.8 \cdot F_{v,Rd} \cdot \beta_{LF} = 0.8 \cdot 94.0 \cdot 0.9875 = 74.3 \, kN\right) < \left(F_{b,Rd,i} = 87.1 \, kN\right) \end{array}$$

Fastener resistance limited by bolt shear resistance

Bearing resistance, $F_{b,Rd} = min \left(F_{b,Rd,e} F_{b,Rd,i}, 0.8 \cdot F_{v,Rd} \cdot \beta_{LF} \right)$

$$= min (107.4,87.1,0.8 \cdot 94.0 \cdot 0.9875)$$

$$= 74.3 \, kN$$

Shear capacity = $F_{b,Rd} \cdot n_1 \cdot n_2$

Report: Connection Cube Report for Partial depth end plate

Connection-bearing on support (110). Reference Pg 22 (continued)

$$= 74.3 \cdot 6 \cdot 2$$

= 891.1 *kN*

Applied member shear, $V_{Ed} = 550.0 \text{ kN}$

Unity =
$$\frac{V_{Ed}}{Shear\ capacity}$$

= $\frac{550.0}{891.1}$
= 0.617215
891.1 $kN \ge 550.0\ kN$ (OK)
 $0.617 \le 1$ (OK)

Supported beam-resistance at notch (364). Reference Pg 18

Yield stress of the supported beam, $f_{v,b1} = 275.0 MPa$

Thickness of the end plate, $t_p = 12.0 \text{ mm}$

Bottom cope length, $l_{nb} = 0.0 \ mm$

Bottom cope depth, $d_{nb} = 0.0 \ mm$

Top cope length, $l_{nt} = 110.0 \ mm$

Top cope depth, $d_{nt} = 50.0 \ mm$

k distance of the supported beam, $k_{b1} = 28.3 \text{ mm}$

Flange thickness of the supported beam, $t_{fb1} = 15.6 \text{ mm}$

Flange width of the supported beam, $b_{fb1} = 209.3 \text{ mm}$

Web thickness of the supported beam, $t_{w,b1} = 10.1 \text{ mm}$

Height of the supported beam, $h_{b1} = 533.1 \text{ mm}$

Applied member shear, $V_{Ed} = 550.0 \text{ kN}$

Effective top cope depth, $d_{nt,e} = max (d_{nt}, 0.0)$

$$= max (50.0, 0.0)$$

$$= 50.0 \ mm$$

Effective top cope length, $l_{nt,e} = l_{nt}$

$$= 110.0 \ mm$$

Effective bottom cope depth, $d_{nb,e} = max \left[d_{nb}, 0.0 \right]$

$$= max (0.0,0.0)$$

$$= 0.0 mm$$

Effective bottom cope length, $l_{nb,e} = l_{nb}$

$$= 0.0 mm$$

Top flange is coped.

Distance from supporting face to end of cope, $e = l_{nt.e} + t_p$

$$= 110.0 + 12.0$$

$$= 122.0 \ mm$$

Area of the Tee section,
$$A_{Tee} = (h_{b1} - d_{nt,e} - t_{f,b1}) \cdot t_{w,b1} + b_{f,b1} \cdot t_{f,b1}$$

= $(533.1 - 50.0 - 15.6) \cdot 10.1 + 209.3 \cdot 15.6$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Supported beam-resistance at notch (364). Reference Pg 18 (continued)

 $= 7986.8 \, mm^2$

Shear area at the notch for single notched beam, $A_{v,N} = A_{Tee} - b_{f,b1} \cdot t_{f,b1} + \frac{k_{b1} \cdot t_{f,b1}}{2}$

$$= 7986.8 - 209.3 \cdot 15.6 + \frac{28.3 \cdot 15.6}{2}$$

 $= 4942.5 \ mm^2$

Elastic modulus of the Tee section at the notch, $W_{el.N.v} = 597565.2 \text{ } mm^3$

 $\gamma_{M0} = 1$

Shear resistance at the notch for single notched beam, $V_{pl,N,Rd} = \frac{\left(\frac{A_{v,N} \cdot f_{y,b1}}{1.73205 \cdot \gamma_{M0}}\right)}{1000.0}$

$$= \frac{\left(\frac{4942.5 \cdot 275.0}{1.73205 \cdot 1}\right)}{1000.0}$$

$$= 784.7 \ kN$$

$$\gamma_{M0} = 1$$

Moment resistance of a single notched beam at the notch in the presence of shear, $M_{v,N,Rd} = \frac{\left|\frac{f_{y,b1} \cdot W_{el,N,y}}{\gamma_{M0}}\right| \cdot \left|1 - \left|\frac{2 \cdot V_{Ed}}{V_{pl,N,Rd}}\right|}{1000000.0}$

$$= \frac{\left(\frac{275.0 \cdot 597565.2}{1}\right) \cdot \left(1 - \left(\frac{2 \cdot 550.0}{784.7} - 1\right)^{2}\right)}{1000000.0}$$

$$= 137.8 \ kN \cdot m$$

Shear resistance at the end of the beam, $V_{Rd} = \left(\frac{M_{v,N,Rd}}{e}\right) \cdot 1000.0$

$$= \left(\frac{137.8}{122.0}\right) \cdot 1000.0$$
$$= 1129.5 \ kN$$

Shear capacity =
$$V_{Rd}$$

$$= 1129.5 \ kN$$

Applied member shear, $V_{Ed} = 550.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$
$$= \frac{550.0}{1129.5}$$
$$= 0.486942$$

$$1129.5 \ kN \ge 550.0 \ kN$$
 (OK)

$$0.487 < 1$$
 (OK)

Report: Connection Cube Report for Partial depth end plate

Connection-in-plane bending (365). Reference Pg 23

Not necessary to check in-plane bending.

Unity = 0

Supporting member-shear (409). Reference Pg 24

Tensile strength of the supporting member, $f_{u,2} = 410.0 MPa$

Yield stress of the supporting member, $f_{v,2} = 265.0 MPa$

Supporting thickness, $t_2 = 6.5 \text{ mm}$

Bolt diameter, d = 20.0 mm

Edge distance to bottom of support, $e_{1,b} = 177.2 \text{ mm}$

Edge distance to top of support, $e_{1,t} = 90.0 \text{ mm}$

Bolt gage, $p_3 = 140.0 \text{ mm}$

Bolt row spacing, $p_1 = 70.0 \, mm$

Bolt rows, $n_1 = 6$

$$e_t = min (e_{1,t} 5 \cdot d)$$

= $min (90.0, 5 \cdot 20.0)$

$$= 90.0 \ mm$$

$$e_b = min \left(e_{1,b}, \frac{p_3}{2}, 5 \cdot d \right)$$

= $min \left(177.2, \frac{140.0}{2}, 5 \cdot 20.0 \right)$

$$= 70.0 \, mm$$

Hole diameter, $d_0 = 22.0 \text{ mm}$

Gross shear area,
$$A_{gv} = t_2 \cdot (e_t + (n_1 - 1) \cdot p_1 + e_b)$$

$$= 6.5 \cdot (90.0 + (6 - 1) \cdot 70.0 + 70.0)$$

$$= 3340.5 \ mm^2$$

Net shear area,
$$A_{nv} = A_{gv} - n_1 \cdot d_0 \cdot t_2$$

$$= 3340.5 - 6 \cdot 22.0 \cdot 6.5$$

$$= 2475.9 \text{ } mm^2$$

$$\gamma_{M2,1-1} = 1.1$$

$$\gamma_{M0} = 1$$

Minimum shear resistance of the supporting member, $V_{Rd,min} = \frac{2 \cdot min \left[\frac{f_{y,2} \cdot A_{gv}}{\sqrt{3} \cdot \gamma_{M0}}, \frac{f_{u,2} \cdot A_{nv}}{\sqrt{3} \cdot \gamma_{M2,1-1}} \right]}{1000.0}$

$$= \frac{2 \cdot min \left(\frac{265.0 \cdot 3340.5}{\sqrt{3} \cdot 1}, \frac{410.0 \cdot 2475.9}{\sqrt{3} \cdot 1.1}\right)}{1000.0}$$

$$= 1022.2 \ kN$$

Shear capacity =
$$V_{Rd,min}$$

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Supporting member-shear (409). Reference Pg 24 (continued)

$$= 1022.2 \ kN$$

Applied member shear, $V_{Ed} = 550.0 \text{ kN}$

$$Unity = \frac{V_{Ed}}{Shear\ capacity}$$
$$= \frac{550.0}{1022.2}$$
$$= 0.538056$$

$$1022.2 \ kN \ge 550.0 \ kN$$
 (OK)

 $0.538 \le 1$ (OK)

Report: Connection Cube Report for Partial depth end plate

Results summary

End Plate on right end of Beam B_10 [10]

Design calculation summary for member [10], right end

Desc. Ref.:	Calc. Num.	Unity Ratio	Resistance	Design Force	Green book ref.
4:	(8)	0.864	393.7 kN	340.0 kN	Pg 17
5:	(364)	0.560	607.3 kN	340.0 kN	Pg 18
8(i):	(1)	0.565	601.6 kN	340.0 kN	Pg 21
8(ii):	(110)	0.565	601.6 kN	340.0 kN	Pg 22
8(iii):	(110)	0.565	601.6 kN	340.0 kN	Pg 22
9(i):	(15)	0.469	725.1 kN	340.0 kN	Pg 23
9(ii):	(21)	0.391	869.4 kN	340.0 kN	Pg 23
9(iii):	(252)	0.492	691.0 kN	340.0 kN	Pg 23
10:	(409)	0.458	741.6 kN	340.0 kN	Pg 24

Check number reference

4:	Supported beam-web shear
5:	Supported beam-resistance at notch
8(i):	Connection-bolt shear
8(ii):	Connection-bearing on plate
8(iii):	Connection-bearing on support
9(i):	Connection-gross shear yielding
9(ii):	Connection-net shear rupture
9(iii):	Connection-block tearing
10:	Supporting member-shear

Connection strength

	Unity ratio:
Shear:	0.864

Report: Connection Cube Report for Partial depth end plate

Notes and conclusions

- Effective weld length = plate length 2 * (weld size) or beam d distance, whichever is less.
- CONNECTION IS OK
 - Design resistance equals or exceeds design forces.
- Weld size satisfies basic requirements of Check 2 from the Green Book.

End Plate on left end of Beam B_12 [11]

Design calculation summary for member [11], left end

Desc. Ref.:	Calc. Num.	Unity Ratio	Resistance	Design Force	Green book ref.
4:	(8)	0.886	620.6 kN	550.0 kN	Pg 17
5:	(364)	0.487	1129.5 kN	550.0 kN	Pg 18
8(i):	(1)	0.609	902.4 kN	550.0 kN	Pg 21
8(ii):	(110)	0.617	891.1 kN	550.0 kN	Pg 22
8(iii):	(110)	0.617	891.1 kN	550.0 kN	Pg 22
9(i):	(15)	0.426	1290.2 kN	550.0 kN	Pg 23
9(ii):	(21)	0.357	1539.1 kN	550.0 kN	Pg 23
9(iii):	(252)	0.460	1195.0 kN	550.0 kN	Pg 23
10:	(409)	0.538	1022.2 kN	550.0 kN	Pg 24

Check number reference

4:	Supported beam-web shear		
5:	Supported beam-resistance at notch		
8(i):	Connection-bolt shear		
8(ii):	Connection-bearing on plate		
8(iii):	Connection-bearing on support		
9(i):	Connection-gross shear yielding		
9(ii):	Connection-net shear rupture		
9(iii):	Connection-block tearing		
10:	Supporting member-shear		

Fabricator: Validation_Eurocode_3UK

Report: Connection Cube Report for Partial depth end plate

Connection strength

Unity ratio:

0.886

Notes and conclusions

- Effective weld length = plate length 2 * (weld size) or beam d distance, whichever is less.
- CONNECTION IS OK
 - Design resistance equals or exceeds design forces.
- Weld size satisfies basic requirements of Check 2 from the Green Book.

Additional notes

Example 1 - Partial depth end plate, page 32, P358 Simple Joints.pdf

