

SDS2 Steel Connection Design: Connection Cube Report

Cube: Ex. II.A-18

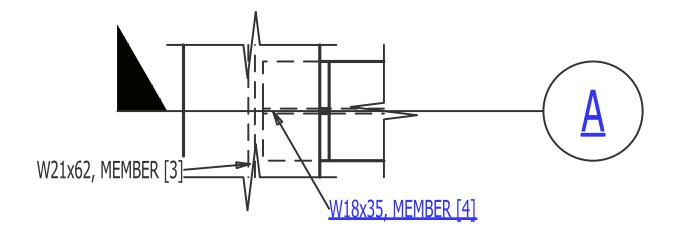
Revision: 0

Project: LRFD16ValidationExamples

Engineer:

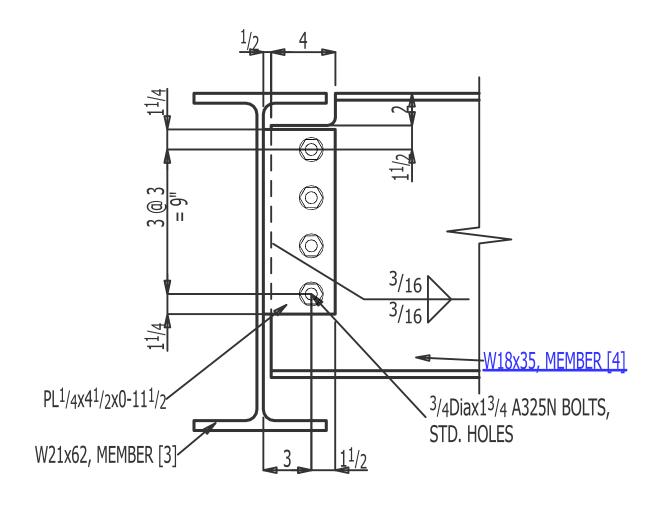
Fabricator: ASD16ValidationExamples

Generated by SDS2 x 2025.03 on Friday, Oct 11, 2024



Report: Connection Cube Report for Ex. II.A-18

Ex. II.A-18 [2] at X=25-0, Y=25-0 Elev=-8 7/8


Report: Connection Cube Report for Ex. II.A-18

TOP SIDE VIEW

Report: Connection Cube Report for Ex. II.A-18

Report: Connection Cube Report for Ex. II.A-18

Beam B_4 [4]

Design method

• AISC Steel Construction Manual, Sixteenth Edition (LRFD)

• AISC 360-22

Overview

Section size:	W18x35
Sequence:	1
ABM:	N/Assign
Plan length:	25-0
Camber:	0.00 in
Span length:	25-0
Slope:	0.00°
Material length:	24-11 5/16
Plan rotation:	0.00 °

Section properties

Material grade:	A992
Yield stress, F_y :	50 ksi
Tensile strength, F_u :	65 ksi
Depth, d:	17.7 in
Web thickness, t_w :	0.3 in
Flange width, b_j :	6 in
Flange thickness, t _j :	0.425 in
Design k distance, k_{des} :	0.827 in
Detail k distance, k_{det} :	1.125 in
Distance between web toes of fillets, T:	15.45 in
Moment of inertia about the major axis, I_x :	510 in ⁴

Report: Connection Cube Report for Ex. II.A-18

Design summary

Left end

Connection:	Shear tab	
	Plate, Size as required	
	No Stiffener Opposite	
	Shear plate on NS, Skew holes in beam	
	Combine shear plates: Automatic	
	One bolt column	
	Bevel shear tab: Automatic	
	Attach to: Supporting	
Elevation:	0	
Minus Dim:	0.6875 in	
Mtrl Setback:	0.6875 in (AUTO)	
Std Detail:	None	
Web:	Web vertical	
End rotation:	0.00 °	
Shear:	39.8 kips	
Moment:	0.0 kip·ft (AUTO)	
Tension:	0.0 kips	
Compress:	0.0 kips	
Tying:	0.0 kips (AUTO)	

Report: Connection Cube Report for Ex. II.A-18

B_4 [4] Connection strength check: LEFT END

Member end summary

Connecting nodes

Node 1

Beam:	B_3 [3]
Section size:	W21x62
End 0 elevation:	0
End 1 elevation:	0
Support intersection elevation:	0
Supporting beam rotation:	0.00 degrees
	(looking toward left end)
Material grade:	A992
Detail k distance, k_{dei} :	1.3125 in
Design k distance, k_{des} :	1.12 in
Supporting member	0.4 in

Factored loads

thickness, t_{sup}:

Shear: 39.8 kips

Design load notes

- Non-composite design
- Reaction has been input
- Design reaction is 49.9 % of the allowable uniform steel beam load.

Report: Connection Cube Report for Ex. II.A-18

Connection summary

• SINGLE PLATE SHEAR CONNECTION

Connection details

Plate:	Grade:	A572-50
	Tensile strength, F_u :	65 ksi
	Yield stress, F_y :	50 ksi
	Thickness, t:	0.25 in
	Width, <i>b</i> :	4.475 in
	Depth, <i>d</i> :	11.5 in
	Weld line to bolt group c.g., a:	2.9875 in
Weld:	Weld type:	Double fillet
	Weld leg size, w:	0.1875 in
	Total effective weld throat, t_e :	0.27 in
	Weld metal strength, $F_{e\!x\!x}$:	70 ksi
Bolts:	Bolt type:	A325N
	Hole type in connection:	Standard round
	Bolt diameter, d_b :	3/4
	Bolt rows, n:	4
	Bolt row spacing, s:	3 in
	Bolt columns, <i>m</i> :	1
	Web end distance, $L_{e,w}$:	2.5 in
Connection geometry:	Dihedral angle, $ heta$:	90.00°

Connection design lock summary

Locked Via Member Edit: 16
(at dd) Not Locked: 263

Project: LRFD16ValidationExamples Page 9

Fabricator: ASD16ValidationExamples

Report: Connection Cube Report for Ex. II.A-18

Cope information

Top cope depth, d_{ct} : 2 in

Top cope length, *C*: 4 in

Cope notes

• Cope length dimension is from the end of the beam web.

• At coped section : $S_{net} = 18.20 \text{ in}^3$, $h_o = 15.70 \text{ in AISC Table 9-2}$

• L_h = 2.50 in, L_v = 1.50 in

Report: Connection Cube Report for Ex. II.A-18

Expanded design calculation

Shear rupture of plate (21). Reference J4.2

Connection tensile strength, $F_u = 65 \text{ ksi}$

Bolt rows,
$$n = 4$$

Connection thickness, $t_{conn} = 0.25 in$

Connection depth, $d_{pl} = 11.5 in$

Hole diameter, $d_h = 0.875$ in

Net shear area, $A_{nv} = t_{conn} \cdot |d_{pl} - n \cdot d_h|$ = 0.25 \cdot (11.5 - 4 \cdot 0.875)

$$= 2. in^2$$

$$\phi = 0.75$$

Shear capacity, $\phi V_n = \phi \cdot 0.6 \cdot F_u \cdot A_{nv}$ = 0.75 \cdot 0.6 \cdot 65 \cdot 2

$$= 58.5 kips$$

Shear capacity = ϕV_n

$$= 58.5 \text{ kips}$$

Applied member shear, $V_a = 39.8 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{39.8}{58.5}$$
$$= 0.680342$$

$$58.5 \ kips \ge 39.8 \ kips$$
 (OK)

$$0.680 \le 1$$
 (OK)

Bolt shear of web bolts (3). Reference J3.7, J3.9

Number of shear planes, $N_s = 1$

Coefficient,
$$C = 3.56171$$

Bolt area,
$$A_b = 0.441786 in^2$$

Allowable shear stress,
$$F_{nv} = 54 \text{ ksi}$$

$$\phi = 0.75$$

Bolt shear capacity, $\phi R_{n,v} = \phi \cdot F_{nv} \cdot A_b \cdot N_s$

$$= 0.75 \cdot 54 \cdot 0.441786 \cdot 1$$

$$= 17.8924 \ kips$$

Shear capacity = $C \cdot \phi R_{n,v}$

$$= 3.56171 \cdot 17.8924$$

$$= 63.7274 \ kips$$

Applied member shear, $V_a = 39.8 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$

Report: Connection Cube Report for Ex. II.A-18

Bolt shear of web bolts (3). Reference J3.7, J3.9 (continued)

$$=\frac{39.8}{63.7}$$

$$= 0.624804$$

$$63.7 \text{ kips} \ge 39.8 \text{ kips}$$
 (OK)

$$0.625 \le 1$$
 (OK)

Block shear rupture of plate (6). Reference J4.3

Plate thickness, $t_{pl} = 0.25 in$

Yield stress,
$$F_y = 50 \text{ ksi}$$

Tensile strength,
$$F_u = 65 \text{ ksi}$$

Bolt column spacing,
$$s_{col} = 0$$
 in

Bolt row spacing,
$$s = 3$$
 in

Bolt rows,
$$n = 4$$

Column edge distance,
$$L_{eh} = 1.4875$$
 in

Row edge distance,
$$L_{ev} = 1.25$$
 in

Bolt columns,
$$m = 1$$

Hole diameter,
$$d_h = 0.875$$
 in

Hole length,
$$l_h = 0.875$$
 in

Total length of bolt group,
$$s_{total} = 9$$
 in

Gross shear area,
$$A_{gv} = t_{pl} \cdot (s_{total} + L_{ev})$$

$$= 0.25 \cdot (9 + 1.25)$$

$$= 2.5625 in^2$$

Net shear area,
$$A_{nv} = t_{pl} \cdot (s_{total} + L_{ev}) - t_{pl} \cdot (n - 0.5) \cdot d_h$$

$$= 0.25 \cdot (9 + 1.25) - 0.25 \cdot (4 - 0.5) \cdot 0.875$$

$$= 1.79688 in^2$$

Gross tensile area,
$$A_{gt} = t_{pl} \cdot (s_{col} \cdot (m - 1) + L_{eh})$$

$$= 0.25 \cdot (0 \cdot (1 - 1) + 1.4875)$$

$$= 0.371875 in^2$$

Net tensile area,
$$A_{nt} = t_{pl} \cdot (s_{col} \cdot (m-1) + L_{eh}) - t_{pl} \cdot (m-0.5) \cdot l_h$$

$$= 0.25 \cdot (0 \cdot (1 - 1) + 1.4875) - 0.25 \cdot (1 - 0.5) \cdot 0.875$$

$$= 0.2625 in^2$$

Reduction coefficient,
$$U_{bs} = 1$$

Shear yield load,
$$R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$$

$$= 0.6 \cdot 50 \cdot 2.5625$$

$$= 76.875 \ kips$$

Shear rupture load,
$$R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$$

$$= 0.6 \cdot 65 \cdot 1.79688$$

$$= 70.0781 \text{ kips}$$

Tension load,
$$R_t = U_{bs} \cdot F_u \cdot A_{nt}$$

$$= 1 \cdot 65 \cdot 0.2625$$

Report: Connection Cube Report for Ex. II.A-18

Block shear rupture of plate (6). Reference J4.3 (continued)

 $= 17.0625 \ kips$

Nominal block shear capacity, $R_n = min (R_{gv}, R_{nv}) + R_t$

- = min (76.875, 70.0781) + 17.0625
- $= 87.1406 \ kips$

 $\phi = 0.75$

Shear capacity = $\phi \cdot R_n$

- $= 0.75 \cdot 87.1406$
- = 65.3555 kips

Applied member shear, $V_a = 39.8 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{39.8}{65.4}$$

$$= 0.608563$$

 $65.4 \ kips \ge 39.8 \ kips$

$$0.609 \le 1$$
 (OK)

Bolt bearing on plate (110). Reference J3.11

Tensile strength, $F_u = 65 \text{ ksi}$

Plate thickness, $t_{pl} = 0.25$ in

Bolt row spacing, s = 3 in

Row edge distance, $L_{ev} = 1.25$ in

Bolt diameter, $d_b = 0.75$ in

Number of shear planes, $N_s = 1$

Bolt columns, m = 1

Bolt rows, n = 4

Total length of bolt group, $s_{total} = 9$ in

Length of joint, $L = s_{total}$ = 9 in

Bolt area, $A_b = 0.441786 in^2$

Allowable shear stress, $F_{nv} = 54 \text{ ksi}$

 $\phi = 0.75$

Bolt shear capacity, $\phi R_{n,v} = \phi \cdot F_{nv} \cdot A_b \cdot N_s$

- $= 0.75 \cdot 54 \cdot 0.441786 \cdot 1$
- $= 17.8924 \ kips$

Hole diameter, $d_h = 0.8125 in$

 $\phi = 0.75$

Bolt bearing capacity, $\phi R_{n,b} = \phi \cdot 2.4 \cdot d_b \cdot t_{pl} \cdot F_u$

- $= 0.75 \cdot 2.4 \cdot 0.75 \cdot 0.25 \cdot 65$
- $= 21.9375 \ kips$

Report: Connection Cube Report for Ex. II.A-18

```
Interior bolt capacity
```

Bolt row spacing, s = 3 in

Clear distance from bolt hole to bolt hole, $L_{c.int} = s - d_h$

$$= 3 - 0.8125$$

$$= 2.1875 in$$

$$\phi = 0.75$$

Tearout load capacity, $\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c,int} \cdot t_{pl} \cdot F_{u}$

$$= 0.75 \cdot 1.2 \cdot 2.1875 \cdot 0.25 \cdot 65$$

$$= 31.9922 kips$$

Controlling bearing/tearout strength of interior bolt, $\phi R_{n,i} = min \left[\phi R_{n,to} \phi R_{n,b} \phi R_{n,v} \right]$

$$= min (31.9922, 21.9375, 17.8924)$$

$$= 17.8924 kips$$

Edge bolt capacity

Clear distance from hole to edge of material, $L_{c,edge} = L_{ev} - 0.5 \cdot d_h$

$$= 1.25 - 0.5 \cdot 0.8125$$

$$= 0.84375 in$$

$$\phi = 0.75$$

Tearout load capacity,
$$\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c.edge} \cdot t_{pl} \cdot F_{u}$$

$$= 0.75 \cdot 1.2 \cdot 0.84375 \cdot 0.25 \cdot 65$$

$$= 12.3398 \ kips$$

Controlling bearing/tearout strength of exterior bolt, $\phi R_{n,e} = min \left[\phi R_{n,to} \phi R_{n,b} \phi R_{n,v} \right]$

$$= min (12.3398, 21.9375, 17.8924)$$

$$= 12.3398 kips$$

Number of edge bolts, $N_e = m$

$$= 1$$

Number of interior bolts, $N_i = m \cdot n - N_e$

$$= 1 \cdot 4 - 1$$

$$=3$$

Shear capacity = $\phi R_{n,e} \cdot N_e + \phi R_{n,i} \cdot N_i$

$$= 12.3398 \cdot 1 + 17.8924 \cdot 3$$

$$= 66.0169 \ kips$$

Applied member shear, $V_a = 39.8 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{39.8}{66}$$

$$= 0.60303$$

$$66.0 \text{ kips} \ge 39.8 \text{ kips}$$
 (OK)

$$0.603 \le 1$$
 (OK)

Report: Connection Cube Report for Ex. II.A-18

Bolt bearing on beam web (110). Reference J3.11

Tensile strength, $F_u = 65 \text{ ksi}$

Plate thickness, $t_{pl} = 0.3$ in

Bolt row spacing, s = 3 in

Row edge distance, $L_{ev} = 1.5$ in

Bolt diameter, $d_b = 0.75$ in

Number of shear planes, $N_s = 1$

Bolt columns, m=1

Bolt rows, n = 4

Total length of bolt group, $s_{total} = 9$ in

Length of joint, $L = s_{total}$

$$=9$$
 in

Bolt area, $A_b = 0.441786 in^2$

Allowable shear stress, $F_{nv} = 54 \text{ ksi}$

$$\phi = 0.75$$

Bolt shear capacity, $\phi R_{n,v} = \phi \cdot F_{nv} \cdot A_b \cdot N_s$

$$= 0.75 \cdot 54 \cdot 0.441786 \cdot 1$$

$$= 17.8924 \ kips$$

Hole diameter, $d_h = 0.8125 in$

$$\phi = 0.75$$

Bolt bearing capacity, $\phi R_{n,b} = \phi \cdot 2.4 \cdot d_b \cdot t_{pl} \cdot F_u$

$$= 0.75 \cdot 2.4 \cdot 0.75 \cdot 0.3 \cdot 65$$

$$= 26.325 kips$$

Interior bolt capacity

Bolt row spacing, s = 3 in

Clear distance from bolt hole to bolt hole, $L_{c,int} = s - d_h$

$$= 3 - 0.8125$$

$$= 2.1875 in$$

$$\phi = 0.75$$

Tearout load capacity, $\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c,int} \cdot t_{pl} \cdot F_u$

$$= 0.75 \cdot 1.2 \cdot 2.1875 \cdot 0.3 \cdot 65$$

$$= 38.3906 \ kips$$

Controlling bearing/tearout strength of interior bolt, $\phi R_{n,i} = min \left[\phi R_{n,to} \phi R_{n,b} \phi R_{n,v} \right]$

$$= min (38.3906, 26.325, 17.8924)$$

$$= 17.8924 kips$$

Edge bolt capacity

Clear distance from hole to edge of material, $L_{c,edge} = L_{ev}$ - 0.5 · d_h

$$= 1.5 - 0.5 \cdot 0.8125$$

$$= 1.09375 in$$

Report: Connection Cube Report for Ex. II.A-18

Edge bolt capacity (continued)

$$\phi = 0.75$$

Tearout load capacity,
$$\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c,edge} \cdot t_{pl} \cdot F_u$$

$$= 0.75 \cdot 1.2 \cdot 1.09375 \cdot 0.3 \cdot 65$$

$$= 19.1953 \ kips$$

Controlling bearing/tearout strength of exterior bolt, $\phi R_{n,e} = min \left[\phi R_{n,to} \phi R_{n,to} \phi R_{n,v}\right]$

$$= min (19.1953, 26.325, 17.8924)$$

$$= 17.8924 kips$$

Number of edge bolts,
$$N_e = m$$

Number of interior bolts, $N_i = m \cdot n - N_e$

$$= 1 \cdot 4 - 1$$

$$=3$$

Shear capacity =
$$\phi R_{n,e} \cdot N_e + \phi R_{n,i} \cdot N_i$$

$$= 17.8924 \cdot 1 + 17.8924 \cdot 3$$

$$= 71.5694 \ kips$$

Applied member shear, $V_a = 39.8 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{39.8}{71.6}$$

$$= \overline{0.555866}$$

$$71.6 \ kips \ge 39.8 \ kips$$
 (OK)

$$0.556 \le 1$$
 (OK)

Shear yielding of plate (38). Reference J4.2

Depth,
$$d = 11.5 in$$

Plate thickness,
$$t_{pl} = 0.25 in$$

Plate yield stress,
$$F_{v,pl} = 50 \text{ ksi}$$

Applied member shear,
$$V_a = 39.8 \text{ kips}$$

Applied tension load, horizontal component,
$$T_{a,h} = 0$$
 kips

Applied compression load, horizontal component, $C_{ah} = 0$ kips

Gross area,
$$A_g = d \cdot t_{pl}$$

$$= 11.5 \cdot 0.25$$

$$= 2.875 in^2$$

$$\phi = 1$$

Plate capacity in pure shear, $\phi R_v = \phi \cdot 0.6 \cdot F_{v,pl} \cdot A_g$

$$=1\cdot 0.6\cdot 50\cdot 2.875$$

$$=86.25 \ kips$$

Unity =
$$\frac{V_a}{\phi R_v}$$

Report: Connection Cube Report for Ex. II.A-18

Shear yielding of plate (38). Reference J4.2 (continued)

$$= \frac{39.8}{86.25}$$
$$= 0.461449$$

Shear capacity =
$$\phi R_{\nu}$$

$$= 86.25 kips$$

$$86.3 \text{ kips} \ge 39.8 \text{ kips}$$
 (OK)

$$0.461 \le 1$$
 (OK)

Block shear of beam web (6). Reference J4.3

Plate thickness, Web thickness = 0.3 in

Yield stress, $F_y = 50 \text{ ksi}$

Tensile strength, $F_u = 65 \text{ ksi}$

Bolt column spacing, $s_{col} = 0$ in

Bolt row spacing, s = 3 in

Bolt rows, n = 4

Column edge distance, $L_{eh} = 2.5 in$

Row edge distance, $L_{ev} = 1.5$ in

Bolt columns, m = 1

Hole diameter, $d_h = 0.875$ in

Hole length, $l_h = 0.875$ in

Total length of bolt group, $s_{total} = 9$ in

Gross shear area, $A_{gv} = Web \ thickness \cdot (s_{total} + L_{ev})$

$$= 0.3 \cdot (9 + 1.5)$$

$$= 3.15 in^2$$

Net shear area, $A_{nv} = \textit{Web thickness} \cdot (s_{total} + L_{ev})$ - $\textit{Web thickness} \cdot (n$ - 0.5) \cdot d_h

$$= 0.3 \cdot (9 + 1.5) - 0.3 \cdot (4 - 0.5) \cdot 0.875$$

$$= 2.23125 in^2$$

Gross tensile area, $A_{gt} = Web \ thickness \cdot (s_{col} \cdot (m - 1) + L_{eh})$

$$= 0.3 \cdot (0 \cdot (1 - 1) + 2.5)$$

$$= 0.75 in^2$$

Net tensile area, $A_{nt} = Web \ thickness \cdot (s_{col} \cdot (m-1) + L_{eh}) - Web \ thickness \cdot (m-0.5) \cdot l_h$

$$= 0.3 \cdot (0 \cdot (1 - 1) + 2.5) - 0.3 \cdot (1 - 0.5) \cdot 0.875$$

$$= 0.61875 in^2$$

Reduction coefficient, $U_{bs} = 1$

Shear yield load, $R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$

$$= 0.6 \cdot 50 \cdot 3.15$$

$$= 94.5 \text{ kips}$$

Shear rupture load, $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$

$$= 0.6 \cdot 65 \cdot 2.23125$$

$$= 87.0187 kips$$

Report: Connection Cube Report for Ex. II.A-18

Block shear of beam web (6). Reference J4.3 (continued)

Tension load,
$$R_t = U_{bs} \cdot F_u \cdot A_{nt}$$

= 1 · 65 · 0.61875
= 40.2188 *kips*
Nominal block shear capacity, $R_n = min (R_{gv}, R_{nv}) + R_t$
= $min (94.5,87.0187) + 40.2188$

$$\phi = 0.75$$

$$\varphi = 0.75$$
Shear capacity = $\varphi \cdot R_n$
= 0.75 \cdot 127.237
= 95.4281 kips

 $= 127.237 \ kips$

Applied member shear, $V_a = 39.8 \text{ kips}$

Unity =
$$\frac{V_a}{Shear\ capacity}$$

= $\frac{39.8}{95.4}$
= 0.417191
95.4 $kips \ge 39.8\ kips$ (OK)
0.417 \le 1 (OK)

Shear rupture of beam web (4). Reference J4.2

Tensile strength, $F_u = 65 \text{ ksi}$

Bottom cope depth, $d_{cb} = 0$ in

Top cope depth, $d_{ct} = 2 in$

Bolt rows,
$$n = 4$$

Web thickness,
$$t_w = 0.3$$
 in

Full section depth,
$$d = 17.7$$
 in

Gross shear area,
$$A_g = t_w \cdot (d - d_{ct} - d_{cb})$$

= 0.3 · (17.7 - 2 - 0)

$$= 0.3 \cdot (1/.7)$$

= 4.71 in²

Hole diameter,
$$d_h = 0.875 in$$

Net shear area,
$$A_n = A_g - n \cdot d_h \cdot t_w$$

$$= 4.71 - 4 \cdot 0.875 \cdot 0.3$$
$$= 3.66 in^2$$

$$\phi = 0.75$$

Shear capacity =
$$\phi \cdot 0.6 \cdot F_u \cdot A_n$$

$$= 0.75 \cdot 0.6 \cdot 65 \cdot 3.66$$

$$= 107.055 \ kips$$

Applied member shear, $V_a = 39.8 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$

Report: Connection Cube Report for Ex. II.A-18

Shear rupture of beam web (4). Reference J4.2 (continued)

$$= \frac{39.8}{107.1}$$
= 0.371615
$$107.1 \text{ kips} \ge 39.8 \text{ kips} \quad \text{(OK)}$$

$$0.372 \le 1 \quad \text{(OK)}$$

Shear yielding of beam web (5). Reference G2.1

Yield stress, $F_v = 50 \text{ ksi}$ Bottom cope depth, $d_{cb} = 0$ in Top cope depth, $d_{ct} = 2$ in Web thickness, $t_w = 0.3$ in Full section depth, d = 17.7 in Gross area, $A_g = t_w \cdot (d - d_{ct} - d_{cb})$ $= 0.3 \cdot (17.7 - 2 - 0)$ $= 4.71 in^2$ $\phi = 1$ Shear capacity = $\phi \cdot 0.6 \cdot F_v \cdot A_g$ $= 1 \cdot 0.6 \cdot 50 \cdot 4.71$ = 141.3 kips

Applied member shear, $V_a = 39.8 \text{ kips}$

Unity =
$$\frac{V_a}{Shear\ capacity}$$

= $\frac{39.8}{141.3}$
= 0.28167
141.3 $kips \ge 39.8\ kips$ (OK)
0.282 ≤ 1 (OK)

Flexure of plate (314). Reference Pg 10-51, 12-7

Shear tab yield stress, $F_v = 50 \text{ ksi}$ Eccentricity, e = 1.49375 in Shear tab thickness, t = 0.25 in Shear tab depth, d = 11.5 in

Plastic section modulus about the major axis, $Z_x = \frac{t \cdot d^2}{4}$

$$= \frac{0.25 \cdot 11.5^{2}}{4}$$
= 8.26562 in³

$$\phi = 0.9$$
Shear capacity = $\frac{\phi \cdot F_{y} \cdot Z_{x}}{e}$
= $\frac{0.9 \cdot 50 \cdot 8.26562}{e}$

1.49375

Report: Connection Cube Report for Ex. II.A-18

Flexure of plate (314). Reference Pg 10-51, 12-7 (continued)

= 249.006 kips

Applied member shear, $V_a = 39.8 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{39.8}{249}$$
$$= 0.159839$$

$$249.0 \ kips \ge 39.8 \ kips \quad \text{(OK)}$$

 $0.160 \le 1$ (OK)

Flexure of coped beam (41). Reference Pg 9-7

Material setback, $m_s = 0.4875$ in

Yield stress, $F_y = 50 \text{ ksi}$

Bottom cope length, $C_b = 0$ in

Bottom cope depth, $d_{cb} = 0$ in

Top cope length, $C_t = 4$ in

Top cope depth, $d_{ct} = 2 in$

k distance, k = 0.827 in

Web thickness, $t_w = 0.3$ in

Beam depth, d = 17.7 in

Steel modulus of elasticity, E = 29000 ksi

Effective top cope depth, $d_{ct,e} = max (d_{ct}, 0)$

$$= max (2,0)$$

$$= 2 in$$

Effective top cope length, $c_{t,e} = C_t$

$$= 4 in$$

Effective bottom cope depth, $d_{cb,e} = max (d_{cb}0)$

$$= max (0,0)$$

$$=0$$
 in

Effective bottom cope length, $c_{b,e} = C_b$

$$= 0 in$$

Top flange is coped.

Depth of coped section, $h_c = d - d_{ct,e} - d_{cb,e}$

$$= 17.7 - 2 - 0$$

$$= 15.7 in$$

Maximum distance from supporting face to end of cope, $e = c_{t,e} + m_s$

$$=4+0.4875$$

$$= 4.4875 in$$

Web slenderness, $\lambda = \frac{h_c}{t_w}$

Report: Connection Cube Report for Ex. II.A-18

Flexure of coped beam (41). Reference Pg 9-7 (continued)

$$= \frac{15.7}{0.3}$$
$$= 52.3333$$

Cope length,
$$C = c_{t,e}$$

= 4 in

Buckling adjustment factor,
$$f = \frac{2 \cdot C}{d}$$

$$= \frac{2 \cdot 4}{17.7}$$
$$= 0.451977$$

Plate buckling coefficient,
$$k = 2.2 \cdot \left(\frac{h_c}{C}\right)^{1.65}$$

$$= 2.2 \cdot \left(\frac{15.7}{4}\right)^{1.65}$$
$$= 21.0019$$

Modified plate buckling coefficient, $k_1 = max \ [f \cdot k, 1.61]$

$$= max (0.451977 \cdot 21.0019, 1.61)$$

$$= 9.49237$$

Limiting slenderness for a compact web,
$$\lambda_p = 0.475 \cdot \sqrt{\left|\frac{k_1 \cdot E}{F_y}\right|^2}$$

$$= 0.475 \cdot \sqrt{\left(\frac{9.49237 \cdot 29000}{50}\right)}$$
$$= 35.2448$$

Plastic section modulus at the cope, $Z_c = 32.0982 in^3$

Plastic bending moment,
$$M_p = \frac{\hat{F}_y \cdot Z_c}{12}$$

$$= \frac{50 \cdot 32.0982}{12}$$
$$= 133.742 \ kip \cdot ft$$

Elastic section modulus at the cope, $S_c = 18.2016 in^3$

Flexural yield moment,
$$M_y = \frac{F_y \cdot S_c}{12}$$

$$= \frac{50 \cdot 18.2016}{12}$$
$$= 75.8398 \ kip \cdot ft$$

Flexural strength at the coped section,
$$M_n = M_p - (M_p - M_y) \cdot \left(\frac{\lambda}{\lambda_p} - 1\right)$$

$$= 133.742 - (133.742 - 75.8398) \cdot \left(\frac{52.3333}{35.2448} - 1\right)$$

$$= 105.668 \ kip \cdot ft$$

$$\phi = 0.9$$

Controlling strength,
$$R_r = \left(\frac{\phi \cdot M_n}{e}\right) \cdot 12$$

$$=\left(\frac{0.9 \cdot 105.668}{4.4875}\right) \cdot 12$$

Report: Connection Cube Report for Ex. II.A-18

Flexure of coped beam (41). Reference Pg 9-7 (continued)

$$= 254.31 \text{ kips}$$

Shear capacity = R_r
 $= 254.31 \text{ kips}$

Applied member shear, $V_a = 39.8 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{39.8}{254.3}$$
$$= 0.156508$$

$$254.3 \ kips \ge 39.8 \ kips$$
 (OK)

 $0.157 \le 1$ (OK)

Shear of support (36). Reference J4.2

Connection depth, $d_{conn} = 11.5 in$

Supporting member tensile strength, $F_{u,s} = 65 \text{ ksi}$

Supporting member thickness, $t_{sup} = 0.4 in$

Web axial load, horizontal component, $P_{a,wh} = 0$ kips

Applied member shear, $V_a = 39.8 \text{ kips}$

Supporting member yield stress, $F_{y,s} = 50 \text{ ksi}$

Shear area,
$$A_v = 2 \cdot d_{conn} \cdot t_{sup}$$

= $2 \cdot 11.5 \cdot 0.4$
= $9.2 in^2$
 $\phi = 0.75$
 $\phi = 1$

Gross shear capacity of support,
$$R_{\nu} = min \left[\phi \cdot 0.6 \cdot F_{y,s} \cdot A_{\nu,\phi} \cdot 0.6 \cdot F_{u,s} \cdot A_{\nu} \right]$$

$$= min (1 \cdot 0.6 \cdot 50 \cdot 9.2, 0.75 \cdot 0.6 \cdot 65 \cdot 9.2)$$

$$= 269.1 \ kips$$

Unity =
$$\frac{V_a}{R_v}$$

= $\frac{39.8}{269.1}$
= 0.1479

Shear capacity =
$$R_v$$

$$= 269.1 \ kips$$

$$269.1 \ kips \ge 39.8 \ kips$$
 (OK)

$$0.148 \le 1$$
 (OK)

Rupture of weld to supporting member (112). Reference J2, Table J2.5

Shear tab thickness, $t_{conn} = 0.25 in$

FS Weld leg size, $w_{fs} = 0.1875$ in

NS Weld leg size, $w_{ns} = 0.1875$ in

Total effective weld throat, $t_{eff} = 0.707 \cdot (w_{ns} + w_{fs})$

Report: Connection Cube Report for Ex. II.A-18

Rupture of weld to supporting member (112). Reference J2, Table J2.5 (continued)

- $= 0.707 \cdot (0.1875 + 0.1875)$
- = 0.265125 in

Minimum specified weld size, $w_{min} = 0.625 \cdot t_{conn}$

- $= 0.625 \cdot 0.25$
- = 0.15625 in

Minimum specified total weld throat thickness, $t_{min} = 2 \cdot 0.707 \cdot w_{min}$

- $= 2 \cdot 0.707 \cdot 0.15625$
- = 0.220938 in

$$|t_{eff} = 0.265125 \ in| \ge |t_{min} = 0.220938 \ in|$$

Weld is sized to develop the full strength of the plate.

Report: Connection Cube Report for Ex. II.A-18

Results summary

Shear Tab on left end of Beam B_4 [4]

AISC manual conventional configuration and design method

$$t d_b/2 + 1/16 in$$

 $t_w d_b/2 + 1/16 in$

Limit state summary

	Calc. Num.	Unity ratio	PHI*Rn	AISC Ref
Shear rupture of plate:	21	0.680	58.5 kips	J4.2
Bolt shear of web bolts:	3	0.625	63.7 kips	J3.7, J3.9
Block shear rupture of plate:	6	0.609	65.4 kips	J4.3
Bolt bearing on plate:	110	0.603	66.0 kips	J3.11
Bolt bearing on beam web:	110	0.556	71.6 kips	J3.11
Shear yielding of plate:	38	0.461	86.3 kips	J4.2
Block shear rupture of beam web:	6	0.417	95.4 kips	J4.3
Shear rupture of beam web:	4	0.372	107.1 kips	J4.2
Shear yielding of beam web:	5	0.282	141.3 kips	G2.1
Flexure of plate:	314	0.160	249.0 kips	Pg 10-51, 12-7
Flexure of coped beam:	41	0.157	254.3 kips	Pg 9-7
Shear of support:	36	0.148	269.1 kips	J4.2

Connection strength

	Value:	Unity ratio:
Shear:	58.5 kips	0.680

Notes and conclusions

- Weld sized to develop the full plate strength.
- See 'Single-plate connection' notes for design criteria applicable to this connection. 🗥
- CONNECTION IS OK
 - Strength equals or exceeds design loads.

