

SDS2 Steel Connection Design: Connection Cube Report

Cube: Ex. II.A-20

Revision: 0

Project: LRFD16ValidationExamples

Engineer:

Fabricator: ASD16ValidationExamples

Generated by SDS2 x 2025.03 on Friday, Oct 11, 2024

Report: Connection Cube Report for Ex. II.A-20

Ex. II.A-20 [4] at X=125-0, Y=75-0 Elev=-11 7/8

Report: Connection Cube Report for Ex. II.A-20

TOP SIDE VIEW Ex. II.A-20

Report: Connection Cube Report for Ex. II.A-20

Report: Connection Cube Report for Ex. II.A-20

Beam B_8 [7]

Design method

• AISC Steel Construction Manual, Sixteenth Edition (LRFD)

• AISC 360-22

Overview

Section size:	W24x68	
Sequence:	1	
ABM:	N/Assign	
Plan length:	25-0	
Camber:	0.00 in	
Span length:	25-0	
Slope:	0.00 °	
Material length:	24-11 3/4	
Plan rotation:	0.00°	

Section properties

Material grade:	A992
Yield stress, F_y :	50 ksi
Tensile strength, F_u :	65 ksi
Depth, d:	23.7 in
Web thickness, t_n :	0.415 in
Flange width, b_{j} :	8.97 in
Flange thickness, t _f :	0.585 in
Design k distance, k_{des} :	1.09 in
Detail k distance, k_{det} :	1.875 in
Distance between web toes of fillets, T:	19.95 in
Moment of inertia about the major axis, I_x :	1830 in ⁴

Report: Connection Cube Report for Ex. II.A-20

Design summary

Right end

Connection:	Splice plate	
	Plates on left end, Near side	
Elevation:	0	
Minus Dim:	0.25 in	
Mtrl Setback:	0.25 in (AUTO)	
Std Detail:	None	
Web:	Web vertical	
End rotation:	0.00°	
Shear:	60.0 kips	
Moment:	0.0 kip·ft (AUTO)	
Tension:	0.0 kips	
Compress:	0.0 kips	
Tying:	0.0 kips (AUTO)	

Report: Connection Cube Report for Ex. II.A-20

B_8 [7] Connection strength check: RIGHT END

Member end summary

Connecting nodes

Node 1

Beam:	B_7 [8]
Section size:	W24x55
End 0 elevation:	0
End 1 elevation:	0
Support intersection elevation:	0
Supporting beam rotation:	0.00 degrees
	(looking toward left end)
Material grade:	A992
Material grade: Detail k distance, k_{det} :	A992 1.4375 in
Detail k distance,	
Detail k distance, k _{det} : Design k distance,	1.4375 in
Detail k distance, k_{det} : Design k distance, k_{des} :	1.4375 in 1.01 in

Factored loads

Shear: 60.0 kips

Design load notes

- Non-composite design
- Reaction has been input
- Design reaction is 28.2 % of the allowable uniform steel beam load.

Report: Connection Cube Report for Ex. II.A-20

Connection summary

- BOLTED BEAM SHEAR PLATE SPLICE
- (Splice plate on one side of web)

Connection details

Plates:	Grade:	A572-50
	Tensile strength, F_u :	65 ksi
	Yield stress, F_y :	50 ksi
Web plates:	Thickness, t:	0.375 in
	Depth, <i>d</i> :	12 in
Web bolts:	Bolt type:	A325N
	Hole type in connection:	Standard round
	Bolt diameter, d_b :	7/8
	Bolt rows, n:	4
	Bolt row spacing, s:	3 in
	Bolt columns, <i>m</i> :	1
Gap between members, g:	0.5 in	

Connection design lock summary

Locked Via Member Edit: 20
(at dd) Not Locked: 106

Report: Connection Cube Report for Ex. II.A-20

Expanded design calculation

Bolt bearing on web plate(s) (20). Reference J3.11

```
Number of shear planes, N_s = 1
Number of sides, N = 1
Row edge distance, L_e = 1.5 in
Connection thickness, t = 0.375 in
Connection tensile strength, F_u = 65 \text{ ksi}
Bolt row spacing, s = 3 in
Bolt columns, m = 1
Bolt rows, n = 4
Bolt diameter, d_b = 0.875 in
C = 3.07968
Total number of bolts, N = n \cdot m
    = 4 \cdot 1
    =4
Number of edge bolts, N_{edge} = m
Number of interior bolts, N_{int} = N - m
    = 4 - 1
    =3
Total length of bolt group, s_{total} = 9 in
Bolt area, A_b = 0.60132 in^2
Allowable shear stress, F_{nv} = 54 \text{ ksi}
\phi = 0.75
Bolt shear capacity, \phi R_{n,v} = \phi \cdot F_{nv} \cdot A_b \cdot N_s
    = 0.75 \cdot 54 \cdot 0.60132 \cdot 1
    = 24.3535 \ kips
Hole diameter, d_h = 0.9375 in
\phi = 0.75
Bolt bearing capacity, \phi R_{n,b} = \phi \cdot 2.4 \cdot d_b \cdot t \cdot F_u
    = 0.75 \cdot 2.4 \cdot 0.875 \cdot 0.375 \cdot 65
    = 38.3906 kips
    Interior bolt capacity
       Bolt row spacing, s = 3 in
       Clear distance from bolt hole to bolt hole, L_{c.int} = s - d_h
            = 3 - 0.9375
            = 2.0625 in
       \phi = 0.75
```

Tearout load capacity, $\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c,int} \cdot t \cdot F_u$

Report: Connection Cube Report for Ex. II.A-20

Interior bolt capacity (continued)

$$= 0.75 \cdot 1.2 \cdot 2.0625 \cdot 0.375 \cdot 65$$

$$= 45.2461 \ kips$$

Controlling bearing/tearout strength of interior bolt, $\phi R_{n,i} = min \left[\phi R_{n,to} \phi R_{n,b} \phi R_{n,v} \right]$

- = min (45.2461, 38.3906, 24.3535)
- = 24.3535 kips

Edge bolt capacity

Clear distance from hole to edge of material, $L_{c,edge} = L_e - 0.5 \cdot d_h$

$$= 1.5 - 0.5 \cdot 0.9375$$

$$= 1.03125 in$$

$$\phi = 0.75$$

Tearout load capacity, $\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c,edge} \cdot t \cdot F_u$

$$= 0.75 \cdot 1.2 \cdot 1.03125 \cdot 0.375 \cdot 65$$

$$= 22.623 kips$$

Controlling bearing/tearout strength of exterior bolt, $\phi R_{n,e} = min \left[\phi R_{n,to} \phi R_{n,b} \phi R_{n,v} \right]$

$$= min (22.623, 38.3906, 24.3535)$$

$$= 22.623 kips$$

Average bolt bearing/tearout, $\phi R_{v,ave} = \frac{\left(\phi R_{n,e} \cdot N_{edge} + \phi R_{n,i} \cdot N_{int}\right)}{N}$

$$=\frac{(22.623\cdot 1+24.3535\cdot 3)}{4}$$

$$= 23.9209 \ kips$$

Shear capacity, $\phi V_n = N \cdot \phi R_{v,ave} \cdot C$

$$= 1 \cdot 23.9209 \cdot 3.07968$$

$$= 73.6687 \ kips$$

Shear capacity = ϕV_n

$$= 73.6687 \ kips$$

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{73.7}$$
$$= 0.814111$$

$$73.7 \ kips \ge 60 \ kips$$
 (OK)

$$0.814 \le 1$$
 (OK)

Bolt bearing on beam web (20). Reference J3.11

Bolt diameter, $d_b = 0.875$ in

Number of shear planes, $N_s = 1$

Number of sides, N = 1

Bolt rows, n = 4

Report: Connection Cube Report for Ex. II.A-20

Bolt bearing on beam web (20). Reference J3.11 (continued)

Bolt columns, m = 1

Vertical bolt spacing, s = 3 in

This beam tensile strength, $F_u = 65 \text{ ksi}$

This beam web thickness, $t_w = 0.415$ in

Other beam tensile strength, $F_{u,s} = 65 \text{ ksi}$

Other beam web thickness, $t_{w,s} = 0.395$ in

This beam

$$C = 3.07968$$

Total number of bolts, $N = n \cdot m$

$$=4\cdot 1$$

$$=4$$

Number of edge bolts, $N_{edge} = m$

Number of interior bolts, $N_{int} = N - m$

$$= 4 - 1$$

$$=3$$

Total length of bolt group, $s_{total} = 9$ in

Bolt area,
$$A_b = 0.60132 in^2$$

Allowable shear stress, $F_{nv} = 54 \text{ ksi}$

$$\phi = 0.75$$

Bolt shear capacity, $\phi R_{n,v} = \phi \cdot F_{nv} \cdot A_b \cdot N_s$

$$= 0.75 \cdot 54 \cdot 0.60132 \cdot 1$$

$$= 24.3535 \ kips$$

Hole diameter, $d_h = 0.9375$ in

$$\phi = 0.75$$

Bolt bearing capacity, $\phi R_{n,b} = \phi \cdot 2.4 \cdot d_b \cdot t_w \cdot F_u$

$$= 0.75 \cdot 2.4 \cdot 0.875 \cdot 0.415 \cdot 65$$

$$= 42.4856 \ kips$$

Interior bolt capacity

Vertical bolt spacing, s = 3 in

Clear distance from bolt hole to bolt hole, $L_{c,int} = s - d_h$

$$= 3 - 0.9375$$

$$= 2.0625 in$$

$$\phi = 0.75$$

Tearout load capacity, $\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c,int} \cdot t_w \cdot F_u$

$$= 0.75 \cdot 1.2 \cdot 2.0625 \cdot 0.415 \cdot 65$$

$$= 50.0723 \ kips$$

Controlling bearing/tearout strength of interior bolt, $\phi R_{n,i} = min \left[\phi R_{n,to} \phi R_{n,b} \phi R_{n,v} \right]$

Report: Connection Cube Report for Ex. II.A-20

Interior bolt capacity (continued)

= min (50.0723, 42.4856, 24.3535)

= 24.3535 kips

Edge bolt capacity

Tear out will not occur, so the bearing capacity controls.

Controlling bearing/tearout strength of exterior bolt, $\phi R_{n,e} = min |\phi R_{n,b} \phi R_{n,v}|$

= min (42.4856, 24.3535)

= 24.3535 kips

Average bolt bearing/tearout, $\phi R_{v,ave} = \frac{\left(\phi R_{n,e} \cdot N_{edge} + \phi R_{n,i} \cdot N_{int}\right)}{N}$

$$= \frac{(24.3535 \cdot 1 + 24.3535 \cdot 3)}{4}$$

 $= 24.3535 \ kips$

Shear capacity, $\phi V_n = N \cdot \phi R_{v,ave} \cdot C$

$$= 1 \cdot 24.3535 \cdot 3.07968$$

= 75.0009 kips

Shear capacity = ϕV_n

= 75.0009 kips

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{75}$$
$$= 0.8$$

Bearing on beam web, $\phi P_{brg} = Shear \ capacity$

= 75 kips

This beam unity ratio, U = Unity

= 0.8

Other beam

$$C = 3.07968$$

Total number of bolts, $N = n \cdot m$

$$= 4$$

Number of edge bolts, $N_{edge} = m$

= 1

Number of interior bolts, $N_{int} = N - m$

$$=3$$

Total length of bolt group, $s_{total} = 9$ in

Bolt area, $A_b = 0.60132 in^2$

Allowable shear stress, $F_{nv} = 54 \text{ ksi}$

Report: Connection Cube Report for Ex. II.A-20

Other beam (continued)

$$\phi = 0.75$$

Bolt shear capacity, $\phi R_{n,v} = \phi \cdot F_{nv} \cdot A_b \cdot N_s$

$$= 0.75 \cdot 54 \cdot 0.60132 \cdot 1$$

$$= 24.3535 \ kips$$

Hole diameter, $d_h = 0.9375$ in

$$\phi = 0.75$$

Bolt bearing capacity, $\phi R_{nh} = \phi \cdot 2.4 \cdot d_h \cdot t_{w,s} \cdot F_{u,s}$

$$= 0.75 \cdot 2.4 \cdot 0.875 \cdot 0.395 \cdot 65$$

$$= 40.4381 \ kips$$

Interior bolt capacity

Vertical bolt spacing, s = 3 in

Clear distance from bolt hole to bolt hole, $L_{c,int} = s - d_h$

$$= 3 - 0.9375$$

$$= 2.0625 in$$

$$\phi = 0.75$$

Tearout load capacity, $\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c,int} \cdot t_{w,s} \cdot F_{u,s}$

$$= 0.75 \cdot 1.2 \cdot 2.0625 \cdot 0.395 \cdot 65$$

$$= 47.6592 kips$$

Controlling bearing/tearout strength of interior bolt, $\phi R_{n,i} = min \left[\phi R_{n,to} \phi R_{n,b} \phi R_{n,v} \right]$

$$= min (47.6592, 40.4381, 24.3535)$$

$$= 24.3535 \ kips$$

Edge bolt capacity

Tear out will not occur, so the bearing capacity controls.

Controlling bearing/tearout strength of exterior bolt, $\phi R_{n,e} = min |\phi R_{n,b} \phi R_{n,v}|$

$$= min (40.4381, 24.3535)$$

$$= 24.3535 kips$$

Average bolt bearing/tearout, $\phi R_{v,ave} = \frac{\left(\phi R_{n,e} \cdot N_{edge} + \phi R_{n,i} \cdot N_{int}\right)}{N}$

$$=\frac{(24.3535\cdot 1+24.3535\cdot 3)}{4}$$

$$= 24.3535 \ kips$$

Shear capacity, $\phi V_n = N \cdot \phi R_{v,ave} \cdot C$

$$= 1 \cdot 24.3535 \cdot 3.07968$$

$$= 75.0009 kips$$

Shear capacity =
$$\phi V_n$$

$$= 75.0009 \ kips$$

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{\textit{Shear capacity}}$$

Report: Connection Cube Report for Ex. II.A-20

Other beam (continued)

$$=\frac{60}{75}$$

= 0.8

Bearing on other web, $\phi P_{brg,s} = Shear \ capacity$

$$=75 \text{ kips}$$

Other beam unity ratio, $U_o = Unity$

$$= 0.8$$

 $Unity = max (U, U_o)$

$$= max (0.8, 0.8)$$

$$= 0.8$$

Shear capacity = $min \left(\phi P_{brg} \phi P_{brg,s} \right)$

$$= min (75,75)$$

$$= 75 \text{ kips}$$

 $75.0 \ kips \ge 60 \ kips$ (OK)

$$0.800 \le 1$$
 (OK)

Bolt shear of web bolts (3). Reference J3.7, J3.9

Number of shear planes, $N_s = 1$

Coefficient, C = 3.07968

Bolt area, $A_b = 0.60132 in^2$

Allowable shear stress, $F_{nv} = 54 \text{ ksi}$

$$\phi = 0.75$$

Bolt shear capacity, $\phi R_{n,v} = \phi \cdot F_{nv} \cdot A_h \cdot N_s$

$$= 0.75 \cdot 54 \cdot 0.60132 \cdot 1$$

$$= 24.3535 \ kips$$

Shear capacity = $C \cdot \phi R_{n,v}$

$$= 3.07968 \cdot 24.3535$$

$$= 75.0009 kips$$

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{75}$$

$$75.0 \text{ kips} \ge 60 \text{ kips}$$
 (OK)

$$0.800 \le 1$$
 (OK)

Shear rupture of web plate(s) (21). Reference J4.2

Connection tensile strength, $F_{u,conn} = 65 \text{ ksi}$

FS bolt rows,
$$n_{FS} = 4$$

NS bolt rows,
$$n_{NS} = 4$$

Report: Connection Cube Report for Ex. II.A-20

Shear rupture of web plate(s) (21). Reference J4.2 (continued)

FS connection thickness, $t_{fs} = 0$ in

NS connection thickness, $t_{ns} = 0.375$ in

FS connection depth, $d_{fs} = 0$ in

NS connection depth, $d_{ns} = 12$ in

Hole diameter, $d_h = 1$ in

NS Net shear area,
$$A_{nv,ns} = t_{ns} \cdot |d_{ns} - n_{NS} \cdot d_h|$$

= 0.375 \cdot (12 - 4 \cdot 1)

$$= 3 in^{2}$$

FS Net shear area,
$$A_{nv,fs} = t_{fs} \cdot (d_{fs} - n_{FS} \cdot d_h)$$

= 0 \cdot (0 - 4 \cdot 1)

$$=0$$
 in²

Total net shear area, $A_{nv,total} = A_{nv,ns} + A_{nv,fs}$

$$= 3 + 0$$

$$= 3 in^2$$

$$\phi = 0.75$$

Shear capacity, $\phi V_n = \phi \cdot 0.6 \cdot F_{u,conn} \cdot A_{nv,total}$

$$=0.75\cdot 0.6\cdot 65\cdot 3$$

$$= 87.75 \text{ kips}$$

Shear capacity = ϕV_n

$$= 87.75 \ kips$$

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$

$$= 60$$

$$=\frac{60}{87.8}$$

$$= 0.683371$$

 $87.8 \text{ kips} \ge 60 \text{ kips}$ (OK)

 $0.683 \le 1$ (OK)

Block shear rupture of web plate(s) (6). Reference J4.3

Plate thickness, $t_{pl} = 0.375$ in

Yield stress, $F_y = 50 \text{ ksi}$

Tensile strength, $F_u = 65 \text{ ksi}$

Bolt column spacing, $s_{col} = 5$ in

Bolt row spacing, s = 3 in

Bolt rows, n = 4

Column edge distance, $L_{eh} = 1.5 in$

Row edge distance, $L_{ev} = 1.5 in$

Bolt columns, m = 1

Hole diameter, $d_h = 1$ in

Report: Connection Cube Report for Ex. II.A-20

Block shear rupture of web plate(s) (6). Reference J4.3 (continued)

Hole length, $l_h = 1$ in

Total length of bolt group, $s_{total} = 9 in$

Gross shear area,
$$A_{gv} = t_{pl} \cdot (s_{total} + L_{ev})$$

$$= 0.375 \cdot (9 + 1.5)$$

$$= 3.9375 in^2$$

Net shear area,
$$A_{nv} = t_{pl} \cdot (s_{total} + L_{ev}) - t_{pl} \cdot (n - 0.5) \cdot d_h$$

$$= 0.375 \cdot (9 + 1.5) - 0.375 \cdot (4 - 0.5) \cdot 1$$

$$= 2.625 in^2$$

Gross tensile area,
$$A_{gt} = t_{pl} \cdot (s_{col} \cdot (m - 1) + L_{eh})$$

$$= 0.375 \cdot (5 \cdot (1 - 1) + 1.5)$$

$$= 0.5625 in^2$$

Net tensile area,
$$A_{nt} = t_{pl} \cdot (s_{col} \cdot (m-1) + L_{eh}) - t_{pl} \cdot (m-0.5) \cdot l_h$$

$$= 0.375 \cdot (5 \cdot (1 - 1) + 1.5) - 0.375 \cdot (1 - 0.5) \cdot 1$$

$$= 0.375 in^2$$

Reduction coefficient, $U_{bs} = 1$

Shear yield load,
$$R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$$

$$= 0.6 \cdot 50 \cdot 3.9375$$

$$= 118.125 kips$$

Shear rupture load, $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$

$$= 0.6 \cdot 65 \cdot 2.625$$

$$= 102.375 kips$$

Tension load, $R_t = U_{bs} \cdot F_u \cdot A_{nt}$

$$= 1 \cdot 65 \cdot 0.375$$

$$= 24.375 \ kips$$

Nominal block shear capacity, $R_n = min |R_{gv}, R_{nv}| + R_t$

$$= min (118.125, 102.375) + 24.375$$

$$= 126.75 kips$$

$$\phi = 0.75$$

Shear capacity =
$$\phi \cdot R_n$$

$$= 0.75 \cdot 126.75$$

$$= 95.0625 kips$$

Applied member shear, $V_a = 60 \text{ kips}$

Unity =
$$\frac{V_a}{Shear\ capacity}$$

= $\frac{60}{95.1}$
= 0.630915

$$95.1 \ kips \ge 60 \ kips$$
 (OK)

$$0.631 \le 1$$
 (OK)

Report: Connection Cube Report for Ex. II.A-20

Shear yielding of web plate(s) (15). Reference J4.2

Connection yield stress, $F_{y,conn} = 50 \text{ ksi}$

FS connection thickness, $t_{fs} = 0$ in

NS connection thickness, $t_{ns} = 0.375$ in

FS connection depth, $d_{fs} = 0$ in

NS connection depth, $d_{ns} = 12 in$

Gross shear area,
$$A_{gv} = d_{ns} \cdot t_{ns} + d_{fs} \cdot t_{fs}$$

= $12 \cdot 0.375 + 0 \cdot 0$

$$= 4.5 in^2$$

$$\phi = 1$$

Shear capacity =
$$\phi \cdot 0.6 \cdot F_{y,conn} \cdot A_{gv}$$

= $1 \cdot 0.6 \cdot 50 \cdot 4.5$
= 135 kips

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{135}$$
$$= 0.4444444$$

$$135.0 \ kips \ge 60 \ kips$$
 (OK)

$$0.444 \le 1$$
 (OK)

Flexure of web plate(s) (19). Reference F11

 $F_{u,conn} = 65 \text{ ksi}$

Plate yield stress, $F_{y,p} = 50 \text{ ksi}$

Bolt row spacing, s = 3 in

Bolt rows, n = 4

Number of connection sides, N=1

Plate thickness, $t_{pl} = 0.375$ in

Connection depth, $d_{pl} = 12 in$

Eccentricity in x-direction, $e_x = 2.5$ in

Hole diameter, $d_h = 1$ in

Gross moment capacity

Steel modulus of elasticity, E = 29000 ksi

Unbraced Length,
$$L_b = e_x$$

$$= 2.5 in$$

Plastic section modulus, $Z = \frac{t_{pl} \cdot d_{pl}^2}{4}$

$$= \frac{0.375 \cdot 12^2}{4}$$

$$= 13.5 in^3$$

Report: Connection Cube Report for Ex. II.A-20

Gross moment capacity (continued)

Elastic section modulus, $S = \frac{t_{pl} \cdot d_{pl}^2}{6}$

$$= \frac{0.375 \cdot 12^2}{6}$$
$$= 9 in^3$$

Plastic bending moment, $M_p = \frac{F_{y,p} \cdot Z}{12}$

$$= \frac{50 \cdot 13.5}{12}$$
$$= 56.25 \text{ kip} \cdot f$$

$$(M_p = 56.25 \ kip \cdot ft) \le \left(\frac{1.5 \cdot F_{y,p} \cdot S}{12} = \frac{1.5 \cdot 50 \cdot 9}{12} = 56.25 \ kip \cdot ft\right)$$

$$\left| \frac{L_b \cdot d_{pl}}{t_{pl}^2} = \frac{2.5 \cdot 12}{0.375^2} = 213.333 \right| > \left| \frac{0.08 \cdot E}{F_{y,p}} = \frac{0.08 \cdot 29000}{50} = 46.4 \right|$$

Lateral-torsional buckling modification factor, $C_b = 1.84$

$$\left| \frac{L_b \cdot d_{pl}}{t_{pl}^2} = \frac{2.5 \cdot 12}{0.375^2} = 213.333 \right| \le \left| \frac{1.9 \cdot E}{F_{y,p}} = \frac{1.9 \cdot 29000}{50} = 1102 \right|$$

Flexural yield moment, $M_y = \frac{F_{y,p} \cdot S}{12}$

$$= \frac{50 \cdot 9}{12}$$
$$= 37.5 \text{ kip} \cdot \text{ft}$$

Nominal flexural strength, $M_n = min \left[C_b \cdot \left[1.52 - 0.274 \cdot \left(\frac{L_b \cdot d_{pl}}{t_{pl}^2} \right) \cdot \left(\frac{F_{yp}}{E} \right) \right] \cdot M_{y}, M_p \right]$

$$= min \left(1.84 \cdot \left(1.52 - 0.274 \cdot \left(\frac{2.5 \cdot 12}{0.375^2} \right) \cdot \left(\frac{50}{29000} \right) \right) \cdot 37.5,56.25 \right)$$

= 56.25 kip \cdot ft

$$\phi = 0.9$$

Gross moment capacity, $\phi M_{n,gross} = N \cdot \phi \cdot M_n$

$$= 1 \cdot 0.9 \cdot 56.25$$

$$= 50.625 \ kip \cdot ft$$

Net moment capacity

$$\phi = 0.75$$

Bending stress, $\phi F_b = \phi \cdot F_{u,conn}$

$$= 0.75 \cdot 65$$

$$=48.75 \ ksi$$

Total length of bolt group, $s_{total} = 9$ in

Row edge distance top, $L_{e,top} = \frac{|d_{pl} - s_{total}|}{2}$

Report: Connection Cube Report for Ex. II.A-20

Net moment capacity (continued)

$$= \frac{(12 - 9)}{2}$$
$$= 1.5 in$$

Row edge distance bottom, $L_{e,bot} = L_{e,top}$

$$= 1.5 in$$

Bolt row spacing, s = 3 in

Net plastic section modulus, $Z_{x,net} = \frac{t_{pl} \cdot (s - d_h) \cdot n^2 \cdot s}{4}$

$$= \frac{0.375 \cdot (3 - 1) \cdot 4^2 \cdot 3}{4}$$
$$= 9 in^3$$

Bolt row spacing, s = 3 in

Deduction of net section modulus due to the bolt holes, $S_{deduct} = \frac{\left| \frac{s^2 \cdot n \cdot (n^2 - 1) \cdot t_{pl} \cdot d_h}{6} \right|}{d}$

$$=\frac{\left(\frac{3^2\cdot 4\cdot (4^2-1)\cdot 0.375\cdot 1}{6}\right)}{12}$$

$$= 2.8125 in^3$$

Net elastic section modulus, $S_{x,net} = \frac{t_{pl} \cdot d_{pl}^2}{6} - S_{deduct}$

$$= \frac{0.375 \cdot 12^2}{6} - 2.8125$$
$$= 6.1875 in^3$$

$$\left(Z_{x,net} = 9 \ in^{3}\right) \le \left(1.5 \cdot S_{x,net} = 1.5 \cdot 6.1875 = 9.28125 \ in^{3}\right)$$

Net moment capacity, $\phi M_{n,net} = \frac{N \cdot \phi F_{b} \cdot Z_{x,net}}{12}$

$$= \frac{1 \cdot 48.75 \cdot 9}{12}$$

= 36.5625 $kip \cdot ft$, Reference: (9-8)

Shear capacity =
$$\left| \frac{\min \left(\phi M_{n,gross}, \phi M_{n,net} \right)}{e_x} \right| \cdot 12$$

= $\left| \frac{\min \left(50.625, 36.5625 \right)}{2.5} \right| \cdot 12$
= 175.5 kips

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{175.5}$$

Report: Connection Cube Report for Ex. II.A-20

Flexure of web plate(s) (19). Reference F11 (continued)

= 0.34188

$$175.5 \ kips \ge 60 \ kips$$
 (OK)

 $0.342 \le 1$ (OK)

Shear yielding of beam web (2). Reference G2.1

This beam depth, d = 23.7 in

This beam web thickness, $t_w = 0.415$ in

This beam yield stress, $F_y = 50 \text{ ksi}$

Other beam depth, $d_s = 23.6$ in

Other beam web thickness, $t_{w,s} = 0.395 in$

Other beam yield stress, $F_{y,s} = 50 \text{ ksi}$

This beam

Applied member shear, $V_a = 60 \text{ kips}$

$$\phi =$$

Allowable shear stress, $\phi F_v = \phi \cdot 0.6 \cdot F_v$

$$=1\cdot 0.6\cdot 50$$

$$= 30 \text{ ksi}$$

Web shear area, $A_w = d \cdot t_w$

$$= 23.7 \cdot 0.415$$

$$= 9.8355 in^2$$

Unity =
$$\frac{V_a}{\phi F_v \cdot A_w}$$

= $\frac{60}{30 \cdot 9.8355}$
= 0.203345

Shear capacity = $\phi F_v \cdot A_w$

$$= 30 \cdot 9.8355$$

$$= 295.065 kips$$

Beam gross shear, $\phi V_g = Shear \ capacity$

$$= 295.1 kips$$

This beam unity ratio, U = Unity

= 0.203345

Other beam

Applied member shear,
$$V_a = 60 \text{ kips}$$

$$\phi = 1$$

Allowable shear stress, $\phi F_v = \phi \cdot 0.6 \cdot F_{y,s}$

$$= 1 \cdot 0.6 \cdot 50$$

$$= 30 \text{ ksi}$$

Web shear area, $A_w = d_s \cdot t_{w,s}$

$$= 23.6 \cdot 0.395$$

Report: Connection Cube Report for Ex. II.A-20

Other beam (continued)

$$= 9.322 \text{ in}^{2}$$

$$Unity = \frac{V_{a}}{\phi F_{v} \cdot A_{w}}$$

$$= \frac{60}{30 \cdot 9.322}$$

$$= 0.214546$$
Shear capacity = $\phi F_{v} \cdot A_{w}$

$$= 30 \cdot 9.322$$

$$= 279.66 \text{ kips}$$

Other beam gross shear, $\phi V_{g,s} = Shear \ capacity$

= 279.7 kips

Other beam unity ratio, $U_o = Unity$

= 0.214546

Unity = $max (U, U_o)$

= max (0.203345, 0.214546)

= 0.214546

Shear capacity = $min \langle \phi V_{g,\phi} V_{g,s} \rangle$

= min (295.1,279.7)

= 279.7 kips

 $279.7 \ kips \ge 60 \ kips$ (OK)

 $0.215 \le 1$ (OK)

Report: Connection Cube Report for Ex. II.A-20

Beam B_7 [8]

Design method

• AISC Steel Construction Manual, Sixteenth Edition (LRFD)

• AISC 360-22

Overview

Section size:	W24x55
Sequence:	1
ABM:	N/Assign
Plan length:	25-0
Camber:	0.00 in
Span length:	25-0
Slope:	0.00°
Material length:	24-11 3/4
Plan rotation:	0.00 °

Section properties

Material grade:	A992
Yield stress, F_y :	50 ksi
Tensile strength, F_u :	65 ksi
Depth, d:	23.6 in
Web thickness, t _w :	0.395 in
Flange width, <i>b_j</i> :	7.01 in
Flange thickness, t _j :	0.505 in
Design k distance, k_{des} :	1.01 in
Detail k distance, k_{det} :	1.4375 in
Distance between web toes of fillets, T:	20.725 in
Moment of inertia about the major axis, I_x :	1350 in ⁴

Report: Connection Cube Report for Ex. II.A-20

Design summary

Left end

Splice plate Connection: Plates on left end, Near side **Elevation: Minus Dim:** 0.25 in 0.25 in (AUTO) Mtrl Setback: **Std Detail:** None Web: Web vertical 0.00° **End rotation: Shear:** 60.0 kips 0.0 kip·ft (AUTO) Moment: **Tension:** 0.0 kips **Compress:** 0.0 kips Tying: 0.0 kips (AUTO)

Report: Connection Cube Report for Ex. II.A-20

B_7 [8] Connection strength check: LEFT END

Member end summary

Connecting nodes

Node 1

Beam:	B_8 [7]
Section size:	W24x68
End 0 elevation:	0
End 1 elevation:	0
Support intersection elevation:	0
Supporting beam rotation:	0.00 degrees
	(looking toward left
	end)
Material grade:	_
Material grade: Detail k distance, k_{det} :	end)
Detail k distance,	end) A992
Detail k distance, k _{dei} : Design k distance,	end) A992 1.875 in
Detail k distance, k_{det} : Design k distance, k_{des} :	end) A992 1.875 in 1.09 in

Factored loads

Shear: 60.0 kips

Design load notes

- Non-composite design
- Reaction has been input
- Design reaction is 37.3 % of the allowable uniform steel beam load.

Report: Connection Cube Report for Ex. II.A-20

Connection summary

- BOLTED BEAM SHEAR PLATE SPLICE
- (Splice plate on one side of web)

Connection details

Plates:	Grade:	A572-50
	Tensile strength, F_u :	65 ksi
	Yield stress, F_y :	50 ksi
Web plates:	Thickness, <i>t</i> :	0.375 in
	Depth, <i>d</i> :	12 in
Web bolts:	Bolt type:	A325N
	Hole type in connection:	Standard round
	Bolt diameter, d_b :	7/8
	Bolt rows, n:	4
	Bolt row spacing, s:	3 in
	Bolt columns, <i>m</i> :	1
Gap between members, g:	0.5 in	

Connection design lock summary

Locked Via Member Edit: 20
(at dd) Not Locked: 106

Report: Connection Cube Report for Ex. II.A-20

Expanded design calculation

Bolt bearing on web plate(s) (20). Reference J3.11

```
Number of shear planes, N_s = 1
Number of sides, N = 1
Row edge distance, L_e = 1.5 in
Connection thickness, t = 0.375 in
Connection tensile strength, F_u = 65 \text{ ksi}
Bolt row spacing, s = 3 in
Bolt columns, m = 1
Bolt rows, n = 4
Bolt diameter, d_b = 0.875 in
C = 3.07968
Total number of bolts, N = n \cdot m
    = 4 \cdot 1
    =4
Number of edge bolts, N_{edge} = m
Number of interior bolts, N_{int} = N - m
    = 4 - 1
    =3
Total length of bolt group, s_{total} = 9 in
Bolt area, A_b = 0.60132 in^2
Allowable shear stress, F_{nv} = 54 \text{ ksi}
\phi = 0.75
Bolt shear capacity, \phi R_{n,v} = \phi \cdot F_{nv} \cdot A_b \cdot N_s
    = 0.75 \cdot 54 \cdot 0.60132 \cdot 1
    = 24.3535 \ kips
Hole diameter, d_h = 0.9375 in
\phi = 0.75
Bolt bearing capacity, \phi R_{n,b} = \phi \cdot 2.4 \cdot d_b \cdot t \cdot F_u
    = 0.75 \cdot 2.4 \cdot 0.875 \cdot 0.375 \cdot 65
    = 38.3906 kips
    Interior bolt capacity
       Bolt row spacing, s = 3 in
       Clear distance from bolt hole to bolt hole, L_{c.int} = s - d_h
            = 3 - 0.9375
            = 2.0625 in
       \phi = 0.75
       Tearout load capacity, \phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c,int} \cdot t \cdot F_u
```


Report: Connection Cube Report for Ex. II.A-20

Interior bolt capacity (continued)

$$= 0.75 \cdot 1.2 \cdot 2.0625 \cdot 0.375 \cdot 65$$

$$= 45.2461 \ kips$$

Controlling bearing/tearout strength of interior bolt, $\phi R_{n,i} = min |\phi R_{n,to} \phi R_{n,b} \phi R_{n,v}|$

- = min (45.2461, 38.3906, 24.3535)
- = 24.3535 kips

Edge bolt capacity

Clear distance from hole to edge of material, $L_{cedge} = L_e - 0.5 \cdot d_h$

$$= 1.5 - 0.5 \cdot 0.9375$$

$$= 1.03125 in$$

$$\phi = 0.75$$

Tearout load capacity, $\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c,edge} \cdot t \cdot F_u$

$$= 0.75 \cdot 1.2 \cdot 1.03125 \cdot 0.375 \cdot 65$$

$$= 22.623 kips$$

Controlling bearing/tearout strength of exterior bolt, $\phi R_{n,e} = min \left[\phi R_{n,to} \phi R_{n,b} \phi R_{n,v} \right]$

$$= min (22.623, 38.3906, 24.3535)$$

$$= 22.623 kips$$

Average bolt bearing/tearout, $\phi R_{v,ave} = \frac{\left(\phi R_{n,e} \cdot N_{edge} + \phi R_{n,i} \cdot N_{int}\right)}{N}$

$$=\frac{(22.623\cdot 1+24.3535\cdot 3)}{4}$$

$$= 23.9209 \ kips$$

Shear capacity, $\phi V_n = N \cdot \phi R_{v,ave} \cdot C$

$$= 1 \cdot 23.9209 \cdot 3.07968$$

$$= 73.6687 \ kips$$

Shear capacity = ϕV_n

$$= 73.6687 \ kips$$

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{73.7}$$

$$73.7$$
 = 0.814111

$$73.7 \ kips \ge 60 \ kips$$
 (OK)

$$0.814 \le 1$$
 (OK)

Bolt bearing on beam web (20). Reference J3.11

Bolt diameter, $d_b = 0.875$ in

Number of shear planes, $N_s = 1$

Number of sides, N = 1

Bolt rows, n = 4

Report: Connection Cube Report for Ex. II.A-20

Bolt bearing on beam web (20). Reference J3.11 (continued)

Bolt columns, m = 1

Vertical bolt spacing, s = 3 in

This beam tensile strength, $F_u = 65 \text{ ksi}$

This beam web thickness, $t_w = 0.395$ in

Other beam tensile strength, $F_{u,s} = 65 \text{ ksi}$

Other beam web thickness, $t_{w,s} = 0.415 in$

This beam

$$C = 3.07968$$

Total number of bolts, $N = n \cdot m$

$$= 4 \cdot 1$$

$$=4$$

Number of edge bolts, $N_{edge} = m$

Number of interior bolts, $N_{int} = N - m$

$$= 4 - 1$$

$$=3$$

Total length of bolt group, $s_{total} = 9$ in

Bolt area,
$$A_b = 0.60132 in^2$$

Allowable shear stress, $F_{nv} = 54 \text{ ksi}$

$$\phi = 0.75$$

Bolt shear capacity, $\phi R_{n,v} = \phi \cdot F_{nv} \cdot A_b \cdot N_s$

$$= 0.75 \cdot 54 \cdot 0.60132 \cdot 1$$

$$= 24.3535 \ kips$$

Hole diameter, $d_h = 0.9375$ in

$$\phi = 0.75$$

Bolt bearing capacity, $\phi R_{n,b} = \phi \cdot 2.4 \cdot d_b \cdot t_w \cdot F_u$

$$= 0.75 \cdot 2.4 \cdot 0.875 \cdot 0.395 \cdot 65$$

$$= 40.4381 \ kips$$

Interior bolt capacity

Vertical bolt spacing, s = 3 in

Clear distance from bolt hole to bolt hole, $L_{c,int} = s - d_h$

$$= 3 - 0.9375$$

$$= 2.0625 in$$

$$\phi = 0.75$$

Tearout load capacity, $\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c,int} \cdot t_w \cdot F_u$

$$= 0.75 \cdot 1.2 \cdot 2.0625 \cdot 0.395 \cdot 65$$

$$= 47.6592 kips$$

Controlling bearing/tearout strength of interior bolt, $\phi R_{n,i} = min \left[\phi R_{n,to}\phi R_{n,b}\phi R_{n,v}\right]$

Report: Connection Cube Report for Ex. II.A-20

Interior bolt capacity (continued)

= min (47.6592, 40.4381, 24.3535)

= 24.3535 kips

Edge bolt capacity

Tear out will not occur, so the bearing capacity controls.

Controlling bearing/tearout strength of exterior bolt, $\phi R_{n,e} = min |\phi R_{n,b} \phi R_{n,v}|$

= min (40.4381, 24.3535)

= 24.3535 kips

Average bolt bearing/tearout, $\phi R_{v,ave} = \frac{\left(\phi R_{n,e} \cdot N_{edge} + \phi R_{n,i} \cdot N_{int}\right)}{N}$

$$= \frac{(24.3535 \cdot 1 + 24.3535 \cdot 3)}{4}$$

 $= 24.3535 \ kips$

Shear capacity, $\phi V_n = N \cdot \phi R_{v,ave} \cdot C$

$$= 1 \cdot 24.3535 \cdot 3.07968$$

= 75.0009 kips

Shear capacity = ϕV_n

= 75.0009 kips

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{75}$$
$$= 0.8$$

Bearing on beam web, $\phi P_{brg} = Shear \ capacity$

= 75 kips

This beam unity ratio, U = Unity

= 0.8

Other beam

$$C = 3.07968$$

Total number of bolts, $N = n \cdot m$

 $= 4 \cdot 1$

= 4

Number of edge bolts, $N_{edge} = m$

= 1

Number of interior bolts, $N_{int} = N - m$

= 4 - 1

= 3

Total length of bolt group, $s_{total} = 9$ in

Bolt area, $A_b = 0.60132 in^2$

Allowable shear stress, $F_{nv} = 54 \text{ ksi}$

Report: Connection Cube Report for Ex. II.A-20

Other beam (continued)

$$\phi = 0.75$$

Bolt shear capacity, $\phi R_{n,v} = \phi \cdot F_{nv} \cdot A_h \cdot N_s$

$$= 0.75 \cdot 54 \cdot 0.60132 \cdot 1$$

$$= 24.3535 \ kips$$

Hole diameter, $d_h = 0.9375$ in

$$\phi = 0.75$$

Bolt bearing capacity, $\phi R_{nh} = \phi \cdot 2.4 \cdot d_h \cdot t_{w,s} \cdot F_{u,s}$

$$= 0.75 \cdot 2.4 \cdot 0.875 \cdot 0.415 \cdot 65$$

$$= 42.4856 \ kips$$

Interior bolt capacity

Vertical bolt spacing, s = 3 in

Clear distance from bolt hole to bolt hole, $L_{c,int} = s - d_h$

$$= 3 - 0.9375$$

$$= 2.0625 in$$

$$\phi = 0.75$$

Tearout load capacity, $\phi R_{n,to} = \phi \cdot 1.2 \cdot L_{c.int} \cdot t_{w,s} \cdot F_{u,s}$

$$= 0.75 \cdot 1.2 \cdot 2.0625 \cdot 0.415 \cdot 65$$

$$= 50.0723 \ kips$$

Controlling bearing/tearout strength of interior bolt, $\phi R_{n,i} = min \left[\phi R_{n,to} \phi R_{n,b} \phi R_{n,v} \right]$

$$= min (50.0723, 42.4856, 24.3535)$$

$$= 24.3535 \ kips$$

Edge bolt capacity

Tear out will not occur, so the bearing capacity controls.

Controlling bearing/tearout strength of exterior bolt, $\phi R_{n,e} = min \left[\phi R_{n,b} \phi R_{n,v}\right]$

$$= min (42.4856, 24.3535)$$

$$= 24.3535 kips$$

Average bolt bearing/tearout, $\phi R_{v,ave} = \frac{\left(\phi R_{n,e} \cdot N_{edge} + \phi R_{n,i} \cdot N_{int}\right)}{N}$

$$=\frac{(24.3535\cdot 1+24.3535\cdot 3)}{4}$$

$$= 24.3535 \ kips$$

Shear capacity, $\phi V_n = N \cdot \phi R_{v,ave} \cdot C$

$$= 1 \cdot 24.3535 \cdot 3.07968$$

$$= 75.0009 kips$$

Shear capacity =
$$\phi V_n$$

$$= 75.0009 kips$$

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$

Report: Connection Cube Report for Ex. II.A-20

Other beam (continued)

$$=\frac{60}{75}$$

= 0.8

Bearing on other web, $\phi P_{brg,s} = Shear \ capacity$

$$=75 \text{ kips}$$

Other beam unity ratio, $U_o = Unity$

$$= 0.8$$

 $Unity = max (U, U_o)$

$$= max (0.8, 0.8)$$

$$= 0.8$$

Shear capacity = $min \left(\phi P_{brg} \phi P_{brg,s} \right)$

$$= min (75,75)$$

$$= 75 \text{ kips}$$

 $75.0 \text{ kips} \ge 60 \text{ kips}$ (OK)

$$0.800 \le 1$$
 (OK)

Bolt shear of web bolts (3). Reference J3.7, J3.9

Number of shear planes, $N_s = 1$

Coefficient, C = 3.07968

Bolt area, $A_b = 0.60132 in^2$

Allowable shear stress, $F_{nv} = 54 \text{ ksi}$

$$\phi = 0.75$$

Bolt shear capacity, $\phi R_{n,v} = \phi \cdot F_{nv} \cdot A_h \cdot N_s$

$$= 0.75 \cdot 54 \cdot 0.60132 \cdot 1$$

$$= 24.3535 \ kips$$

Shear capacity = $C \cdot \phi R_{n,v}$

$$= 3.07968 \cdot 24.3535$$

$$= 75.0009 kips$$

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{75}$$

$$75.0 \text{ kips} \ge 60 \text{ kips}$$
 (OK)

$$0.800 \le 1$$
 (OK)

Shear rupture of web plate(s) (21). Reference J4.2

Connection tensile strength, $F_{u,conn} = 65 \text{ ksi}$

FS bolt rows,
$$n_{ES} = 4$$

NS bolt rows,
$$n_{NS} = 4$$

Report: Connection Cube Report for Ex. II.A-20

Shear rupture of web plate(s) (21). Reference J4.2 (continued)

FS connection thickness, $t_{fs} = 0$ in

NS connection thickness, $t_{ns} = 0.375$ in

FS connection depth, $d_{fs} = 0$ in

NS connection depth, $d_{ns} = 12$ in

Hole diameter, $d_h = 1$ in

NS Net shear area,
$$A_{nv,ns} = t_{ns} \cdot (d_{ns} - n_{NS} \cdot d_h)$$

$$= 0.375 \cdot (12 - 4 \cdot 1)$$

$$= 3 in^{2}$$

FS Net shear area,
$$A_{nv,fs} = t_{fs} \cdot (d_{fs} - n_{FS} \cdot d_h)$$

$$= 0 \cdot (0 - 4 \cdot 1)$$

$$=0$$
 in²

Total net shear area, $A_{nv,total} = A_{nv,ns} + A_{nv,fs}$

$$= 3 + 0$$

$$= 3 in^2$$

$$\phi = 0.75$$

Shear capacity,
$$\phi V_n = \phi \cdot 0.6 \cdot F_{u,conn} \cdot A_{nv,total}$$

$$=0.75\cdot 0.6\cdot 65\cdot 3$$

$$= 87.75 \text{ kips}$$

Shear capacity =
$$\phi V_n$$

$$= 87.75 \ kips$$

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$

$$=\frac{60}{87.8}$$

$$= 0.683371$$

 $87.8 \text{ kips} \ge 60 \text{ kips}$ (OK)

 $0.683 \le 1$ (OK)

Block shear rupture of web plate(s) (6). Reference J4.3

Plate thickness, $t_{pl} = 0.375$ in

Yield stress, $F_y = 50 \text{ ksi}$

Tensile strength, $F_u = 65 \text{ ksi}$

Bolt column spacing, $s_{col} = 5$ in

Bolt row spacing, s = 3 in

Bolt rows, n = 4

Column edge distance, $L_{eh} = 1.5 in$

Row edge distance, $L_{ev} = 1.5 in$

Bolt columns, m = 1

Hole diameter, $d_h = 1$ in

Report: Connection Cube Report for Ex. II.A-20

Block shear rupture of web plate(s) (6). Reference J4.3 (continued)

Hole length, $l_h = 1$ in

Total length of bolt group, $s_{total} = 9 in$

Gross shear area,
$$A_{gv} = t_{pl} \cdot (s_{total} + L_{ev})$$

$$= 0.375 \cdot (9 + 1.5)$$

$$= 3.9375 in^2$$

Net shear area,
$$A_{nv} = t_{pl} \cdot (s_{total} + L_{ev}) - t_{pl} \cdot (n - 0.5) \cdot d_h$$

$$= 0.375 \cdot (9 + 1.5) - 0.375 \cdot (4 - 0.5) \cdot 1$$

$$= 2.625 in^2$$

Gross tensile area,
$$A_{gt} = t_{pl} \cdot (s_{col} \cdot (m - 1) + L_{eh})$$

$$= 0.375 \cdot (5 \cdot (1 - 1) + 1.5)$$

$$= 0.5625 in^2$$

Net tensile area,
$$A_{nt} = t_{pl} \cdot (s_{col} \cdot (m-1) + L_{eh}) - t_{pl} \cdot (m-0.5) \cdot l_h$$

$$= 0.375 \cdot (5 \cdot (1 - 1) + 1.5) - 0.375 \cdot (1 - 0.5) \cdot 1$$

$$= 0.375 in^2$$

Reduction coefficient, $U_{bs} = 1$

Shear yield load,
$$R_{gv} = 0.6 \cdot F_y \cdot A_{gv}$$

$$= 0.6 \cdot 50 \cdot 3.9375$$

$$= 118.125 kips$$

Shear rupture load, $R_{nv} = 0.6 \cdot F_u \cdot A_{nv}$

$$= 0.6 \cdot 65 \cdot 2.625$$

$$= 102.375 kips$$

Tension load,
$$R_t = U_{bs} \cdot F_u \cdot A_{nt}$$

$$= 1 \cdot 65 \cdot 0.375$$

$$= 24.375 \ kips$$

Nominal block shear capacity, $R_n = min |R_{gv}, R_{nv}| + R_t$

$$= min (118.125, 102.375) + 24.375$$

$$= 126.75 kips$$

$$\phi = 0.75$$

Shear capacity =
$$\phi \cdot R_n$$

$$= 0.75 \cdot 126.75$$

$$= 95.0625 kips$$

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{95.1}$$

95.1
$$kips \ge 60 kips$$
 (OK)

$$0.631 \le 1$$
 (OK)

= 0.630915

Report: Connection Cube Report for Ex. II.A-20

Shear yielding of web plate(s) (15). Reference J4.2

Connection yield stress, $F_{y,conn} = 50 \text{ ksi}$

FS connection thickness, $t_{fs} = 0$ in

NS connection thickness, $t_{ns} = 0.375$ in

FS connection depth, $d_{fs} = 0$ in

NS connection depth, $d_{ns} = 12 in$

Gross shear area,
$$A_{gv} = d_{ns} \cdot t_{ns} + d_{fs} \cdot t_{fs}$$

= $12 \cdot 0.375 + 0 \cdot 0$
= $4.5 in^2$

$$-4.3$$

$$\phi = 1$$

Shear capacity =
$$\phi \cdot 0.6 \cdot F_{y,conn} \cdot A_{gv}$$

= $1 \cdot 0.6 \cdot 50 \cdot 4.5$
= 135 kips

$$= 135 \text{ kaps}$$

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{135}$$
$$= 0.4444444$$

$$135.0 \ kips \ge 60 \ kips \quad (OK)$$

$$0.444 \le 1$$
 (OK)

Flexure of web plate(s) (19). Reference F11

$$F_{u,conn} = 65 \text{ ksi}$$

Plate yield stress, $F_{y,p} = 50 \text{ ksi}$

Bolt row spacing, s = 3 in

Bolt rows, n = 4

Number of connection sides, N=1

Plate thickness, $t_{pl} = 0.375$ in

Connection depth, $d_{pl} = 12 in$

Eccentricity in x-direction, $e_x = 2.5$ in

Hole diameter, $d_h = 1$ in

Gross moment capacity

Steel modulus of elasticity, E = 29000 ksi

Unbraced Length,
$$L_b = e_x$$

$$= 2.5 in$$

Plastic section modulus, $Z = \frac{t_{pl} \cdot d_{pl}^2}{4}$

$$= \frac{0.375 \cdot 12^2}{4}$$

$$= 13.5 in^3$$

Report: Connection Cube Report for Ex. II.A-20

Gross moment capacity (continued)

Elastic section modulus, $S = \frac{t_{pl} \cdot d_{pl}^2}{6}$

$$= \frac{0.375 \cdot 12^2}{6}$$
$$= 9 in^3$$

Plastic bending moment, $M_p = \frac{F_{y,p} \cdot Z}{12}$

$$= \frac{50 \cdot 13.5}{12}$$
$$= 56.25 \text{ kip} \cdot f$$

$$(M_p = 56.25 \ kip \cdot ft) \le \left(\frac{1.5 \cdot F_{y,p} \cdot S}{12} = \frac{1.5 \cdot 50 \cdot 9}{12} = 56.25 \ kip \cdot ft\right)$$

$$\left| \frac{L_b \cdot d_{pl}}{t_{pl}^2} = \frac{2.5 \cdot 12}{0.375^2} = 213.333 \right| > \left| \frac{0.08 \cdot E}{F_{y,p}} = \frac{0.08 \cdot 29000}{50} = 46.4 \right|$$

Lateral-torsional buckling modification factor, $C_b = 1.84$

$$\left| \frac{L_b \cdot d_{pl}}{t_{pl}^2} = \frac{2.5 \cdot 12}{0.375^2} = 213.333 \right| \le \left| \frac{1.9 \cdot E}{F_{y,p}} = \frac{1.9 \cdot 29000}{50} = 1102 \right|$$

Flexural yield moment, $M_y = \frac{F_{y,p} \cdot S}{12}$

$$= \frac{50 \cdot 9}{12}$$
$$= 37.5 \text{ kip} \cdot \text{ft}$$

Nominal flexural strength, $M_n = min \left| C_b \cdot \left| 1.52 - 0.274 \cdot \left| \frac{L_b \cdot d_{pl}}{t_{pl}^2} \right| \cdot \left| \frac{F_{y,p}}{E} \right| \right| \cdot M_y, M_p \right|$

$$= min \left(1.84 \cdot \left(1.52 - 0.274 \cdot \left(\frac{2.5 \cdot 12}{0.375^2} \right) \cdot \left(\frac{50}{29000} \right) \right) \cdot 37.5,56.25 \right)$$

= 56.25 kip \cdot ft

$$\phi = 0.9$$

Gross moment capacity, $\phi M_{n,gross} = N \cdot \phi \cdot M_n$

$$= 1 \cdot 0.9 \cdot 56.25$$

$$= 50.625 \ kip \cdot ft$$

Net moment capacity

$$\phi = 0.75$$

Bending stress, $\phi F_b = \phi \cdot F_{u,conn}$

$$= 0.75 \cdot 65$$

$$=48.75 \ ksi$$

Total length of bolt group, $s_{total} = 9$ in

Row edge distance top, $L_{e,top} = \frac{|d_{pl} - s_{total}|}{2}$

Report: Connection Cube Report for Ex. II.A-20

Net moment capacity (continued)

$$= \frac{(12 - 9)}{2}$$

= 1.5 in

Row edge distance bottom, $L_{e,bot} = L_{e,top}$

$$= 1.5 in$$

Bolt row spacing, s = 3 in

Net plastic section modulus, $Z_{x,net} = \frac{t_{pl} \cdot (s - d_h) \cdot n^2 \cdot s}{4}$

$$= \frac{0.375 \cdot (3 - 1) \cdot 4^2 \cdot 3}{4}$$
$$= 9 in^3$$

Bolt row spacing, s = 3 in

Deduction of net section modulus due to the bolt holes, $S_{deduct} = \frac{\left| \frac{s^2 \cdot n \cdot (n^2 - 1) \cdot t_{pl} \cdot d_h}{6} \right|}{d}$

$$=\frac{\left(\frac{3^2\cdot 4\cdot (4^2-1)\cdot 0.375\cdot 1}{6}\right)}{12}$$

$$= 2.8125 in^3$$

Net elastic section modulus, $S_{x,net} = \frac{t_{pl} \cdot d_{pl}^2}{6} - S_{deduct}$

$$= \frac{0.375 \cdot 12^2}{6} - 2.8125$$
$$= 6.1875 in^3$$

$$|Z_{x,net} = 9 \text{ in}^3| \le |1.5 \cdot S_{x,net}| = 1.5 \cdot 6.1875 = 9.28125 \text{ in}^3|$$

 $\left(Z_{x,net} = 9 \ in^{3}\right) \le \left(1.5 \cdot S_{x,net} = 1.5 \cdot 6.1875 = 9.28125 \ in^{3}\right)$ Net moment capacity, $\phi M_{n,net} = \frac{N \cdot \phi F_{b} \cdot Z_{x,net}}{12}$

$$= \frac{1 \cdot 48.75 \cdot 9}{12}$$

= 36.5625 *kip* · *ft*, Reference: (9-8)

Shear capacity =
$$\left| \frac{\min \left(\phi M_{n,gross}, \phi M_{n,net} \right)}{e_x} \right| \cdot 12$$

= $\left| \frac{\min \left(50.625, 36.5625 \right)}{2.5} \right| \cdot 12$
= 175.5 kips

Applied member shear, $V_a = 60 \text{ kips}$

$$Unity = \frac{V_a}{Shear\ capacity}$$
$$= \frac{60}{175.5}$$

Report: Connection Cube Report for Ex. II.A-20

Flexure of web plate(s) (19). Reference F11 (continued)

= 0.34188

$$175.5 \text{ kips} \ge 60 \text{ kips}$$
 (OK)

 $0.342 \le 1$ (OK)

Shear yielding of beam web (2). Reference G2.1

This beam depth, d = 23.6 in

This beam web thickness, $t_w = 0.395$ in

This beam yield stress, $F_v = 50 \text{ ksi}$

Other beam depth, $d_s = 23.7$ in

Other beam web thickness, $t_{w,s} = 0.415 in$

Other beam yield stress, $F_{y,s} = 50 \text{ ksi}$

This beam

Applied member shear, $V_a = 60 \text{ kips}$

$$\phi =$$

Allowable shear stress, $\phi F_v = \phi \cdot 0.6 \cdot F_y$

$$=1\cdot 0.6\cdot 50$$

$$= 30 \text{ ksi}$$

Web shear area, $A_w = d \cdot t_w$

$$= 23.6 \cdot 0.395$$

$$= 9.322 in^2$$

$$Unity = \frac{V_a}{\phi F_v \cdot A_w} = \frac{60}{30 \cdot 9.322} = 0.214546$$

Shear capacity =
$$\phi F_v \cdot A_w$$

$$= 30 \cdot 9.322$$

$$= 279.66 \text{ kips}$$

Beam gross shear, $\phi V_g = Shear \ capacity$

$$= 279.7 \ kips$$

This beam unity ratio, U = Unity

$$= 0.214546$$

Other beam

Applied member shear,
$$V_a = 60 \text{ kips}$$

$$\phi = 1$$

Allowable shear stress, $\phi F_v = \phi \cdot 0.6 \cdot F_{y,s}$

$$= 1 \cdot 0.6 \cdot 50$$

$$= 30 \text{ ksi}$$

Web shear area,
$$A_w = d_s \cdot t_{w,s}$$

$$= 23.7 \cdot 0.415$$

Report: Connection Cube Report for Ex. II.A-20

Other beam (continued)

$$= 9.8355 in^{2}$$

$$Unity = \frac{V_{a}}{\phi F_{v} \cdot A_{w}}$$

$$= \frac{60}{30 \cdot 9.8355}$$

$$= 0.203345$$

$$Shear \ capacity = \phi F_{v} \cdot A_{w}$$

$$= 30 \cdot 9.8355$$

Other beam gross shear, $\phi V_{g,s} = Shear \ capacity$

 $= 295.1 \ kips$

Other beam unity ratio, $U_o = Unity$

= 295.065 kips

= 0.203345

Unity = $max (U, U_o)$

= max (0.214546, 0.203345)

= 0.214546

Shear capacity = $min \left(\phi V_{g,\phi} \phi V_{g,s} \right)$

= min (279.7,295.1)

= 279.7 kips

 $279.7 \ kips \ge 60 \ kips$ (OK)

 $0.215 \le 1$ (OK)

Report: Connection Cube Report for Ex. II.A-20

Results summary

Beam Splice Plates on right end of Beam B_8 [7]

Limit state summary

	Calc. Num.	Unity ratio	PHI*Rn	AISC Ref
Bolt bearing on web plate(s):	20	0.814	73.7 kips	J3.11
Bolt bearing on beam web:	20	0.800	75.0 kips	J3.11
Bolt shear of web bolts:	3	0.800	75.0 kips	J3.7, J3.9
Shear rupture of web plate(s):	21	0.683	87.8 kips	J4.2
Block shear rupture of web plate(s):	6	0.631	95.1 kips	J4.3
Shear yielding of web plate(s):	15	0.444	135.0 kips	J4.2
Flexure of web plate(s):	19	0.342	175.5 kips	F11
Shear yielding of beam web:	2	0.215	279.7 kips	G2.1

Connection strength

	Value:	Unity ratio:
Shear:	73.7 kips	0.814

Notes and conclusions

- Splice design is based on the smaller beam load and moment.
- The effect of eccentricity is included in the web connection design:
 - La = 2.5 in (0.5 * dist. between C.G.'s of bolt groups).
- CONNECTION IS OK
 - Strength equals or exceeds design loads.

Beam Splice Plates on left end of Beam B_7 [8]

Limit state summary

	Calc. Num.	Unity ratio	PHI*Rn	AISC Ref	
Bolt bearing on web plate(s):	20	0.814	73.7 kips	J3.11	
Bolt bearing on beam web:	20	0.800	75.0 kips	J3.11	
Bolt shear of web bolts:	3	0.800	75.0 kips	J3.7, J3.9	

Fabricator: ASD16ValidationExamples

Report: Connection Cube Report for Ex. II.A-20

Limit state summary (continued)

Shear rupture of web plate(s):	21	0.683	87.8 kips	J4.2
Block shear rupture of web plate(s):	6	0.631	95.1 kips	J4.3
Shear yielding of web plate(s):	15	0.444	135.0 kips	J4.2
Flexure of web plate(s):	19	0.342	175.5 kips	F11
Shear yielding of beam web:	2	0.215	279.7 kips	G2.1

Connection strength

	Value:	Unity ratio:
Shear:	73.7 kips	0.814

Notes and conclusions

- Splice design is based on the smaller beam load and moment.
- The effect of eccentricity is included in the web connection design:
 - La = 2.5 in (0.5 * dist. between C.G.'s of bolt groups).
- CONNECTION IS OK
 - Strength equals or exceeds design loads.

